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Outline
SQMC:

1. Intro to Variational and Projector Monte Carlo (PMC) methods (zero
temperature)

2. Sign Problem in various Projector Monte Carlo (PMC)
3. Semistochastic Quantum Monte Carlo

with Frank Petruzielo, Hitesh Changlani, Adam Holmes and Peter
Nightingale, PRL (2012)

SQMC work motivated by:
a) FCIQMC: Alavi and group (Booth, Thom, Cleland, Spencer, Shepherd, ...)
b) PMC: Ohtsuka and Nagase

Valuable discussions with Bryan Clark, George Booth, Shiwei Zhang, Garnet
Chan, Ali Alavi.

Derivatives of FN-PMC Energies:

4. Optimization of many-body wavefunctions
5. Efficient derivatives of FN-PMC energies
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The problem

We wish to find the lowest energy eigenstate(s) of a sparse matrix, e.g., the
Hamiltonian matrix.

If the number of basis states is sufficiently small that one can store a vector
(say < 1010), then one can use a deterministic iterative method, such as the
power method or the Lanczos method.

Quantum Monte Carlo: If the space is larger than this, even infinite, one can
use a stochastic implementation of the power method. At any instant in
time only a random sample of the vector is stored in computer memory, and
the solution is given by the time-average.
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Definitions
Given a basis: {|φi 〉}, either discrete or continuous

Exact |Ψ0〉 =
∑

i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial |ΨT 〉 =
∑

i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding |ΨG 〉 =
∑

i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/ 〈ΨT|ΨT〉 , 〈ΨT|Â|Ψ0〉/ 〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G
in VMC, ΨGΨ0 in

PMC. Affects only the statistical error of VMC and PMC methods.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. However, to speed up computation of
mixed energy components, ΨT often has ti = 0 on most states.
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Variational MC

EV =
〈ΨT|Ĥ|ΨT〉

〈ΨT|ΨT〉
=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉
∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj
∑Nst

k t2k

=

Nst∑

i

t2i
∑Nst

k t2k

∑Nst

j Hij tj

ti
︸ ︷︷ ︸

EL(i)

=

Nst∑

i

t2i
∑Nst

k t2k

EL(i) =

∑NMC

i EL(i)

NMC

→ΨG 6=ΨT

∑NMC

i

(
ti
gi

)2
EL(i)

∑NMC

i

(
ti
gi

)2

Sample probability density function
g2
i

∑Nst
k

g2
k

using Metropolis-Hastings.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.
Energy bias and statistical error vanish as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT minimizes statistical fluctuations of denominator but not of
EV ! Making ΨG worse may reduce statistical fluctuations!
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉

〈Ψ0|Ψ0〉
=

〈Ψ0|Ĥ|ΨT〉

〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉

〈Ψ0|ΨT〉
=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉
∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj
∑Nst

k ektk
=

Nst∑

i

ei ti
∑Nst

k ektk

∑Nst

j Hij tj

ti

=

Nst∑

i

ei ti
∑Nst

k ektk
EL(i) =

∑NMC

i EL(i)

NMC

→ΨG 6=ΨT

∑NMC

i

(
ti
gi

)

EL(i)

∑NMC

i

(
ti
gi

)

For exact PMC, value indep. of ΨT, ΨG, statistical error depends on ΨT, ΨG.
For FN-PMC, value and statistical error depend on ΨG,ΨT. (Continuum ΨG = ΨT)
Energy bias and statistical error of Emix vanish as ΨT → Ψ0 and of Egr as ΨG → Ψ0.

For fixed ΨT , ΨG = ΨT minimizes statistical fluctuations of denom. but not of EV !
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Projector Monte Carlo Methods
The amplitudes of Ψ0 in the chosen basis are obtained by using a “Projector”, P̂ ,
that is a function of the Hamiltonian, Ĥ, and has Ψ0 as its dominant state.

Various Projector Monte Carlo Methods differ in:
a) form of the projector, and,
b) space in which the walk is done (single-particle basis and quantization).
(1st -quantized ≡ unsymmetrized basis, 2nd -quantized ≡ antisymmetrized basis.)

Method Projector SP Basis Quantiz

Diffusion Monte Carlo eτ(ET 1̂−Ĥ) r 1st

GFMC (Kalos, Ceperley, Schmidt) 1
1̂−τ(ET 1̂−Ĥ)

r 1st

LRDMC (Sorella, Casula) 1̂+ τ(ET 1̂− Ĥ) ri 1st

PMC/FCIQMC/SQMC 1 + τ(ET 1̂− Ĥ) φorthogi 2nd

phaseless AFQMC (Zhang, Krakauer) eτ(ET 1̂−Ĥ) φnonorthogi 2nd
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Sign Problem

The nature of the sign problem is different in the various methods,
depending on the space in which the walk is done.
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Sign Problem in DMC

P̂(τ) = eτ(ET 1̂−Ĥ)

Walk is done in the space of the 3N coordinates of the N electrons.

〈R|P̂(τ)|R ′〉 ≈ e

−(R−R ′)2

2τ +

(

ET−
V(R)+V(R ′)

2

)

τ

(2πτ)3N/2
is nonnegative.

Problem: However, since the Bosonic energy is always lower than the
Fermionic energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.
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Sign Problem in 1st Quantization and R space

Fermi ground state
Bose ground state

Trial state
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Sign Problem in 1st Quantization and R space

Start with equal + and - walkers, so no Bosonic component.

Plus walkers
Minus walkers
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state

Problem: In large space walkers rarely meet and cancel!
Worse Problem: Eventually + or - walkers dominate, there are no more
cancellations and only one Bosonic compoent remains!
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Sign Problem in 2nd quantization
Walk is done in the space of determinants.

Since Bosonic and other symmetry states are eliminated, there is some hope of
having a stable signal to noise, but there is still a sign problem.

Problem: Paths leading from state i to state j can contribute with opposite sign.
Further, Ψ and −Ψ are equally good.

The projector in the chosen basis does not have a sign problem if:
The columns of the projector have the same sign structure aside from an overall sign.
or equivalently:
It is possible to find a set of sign changes of the basis functions such that all
elements of the projector are nonnegative.

The sign problem is an issue only because of the stochastic nature of the algorithm.
Walkers of different signs can be spawned onto a given state in different MC
generations.
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Sign Problem in orbital space and 2nd Quantization

FCIQMC (Booth, Thom, Alavi, JCP (2009)
When walk is done is space of determinants of HF orbitals, it is practical to
have a population that is sufficiently large that cancellations can result in a
finite signal to noise ratio. Once a critical population size is reached the
probability of sign flips of the population rapidly become very small.

Initiator approximation (Cleland, Booth, Alavi, JCP (2010)
The required population size can be greatly reduced by allowing only
determinants occupied by more than a certain number of walkers to spawn
progeny on unoccupied determinants.

Becomes exact in the limit of infinite population size.

In subsequent papers they published FCIQMC calculations on various
molecules, the homogeneous electron gas, and, real solids. Largest system
has as many as 10108 states. (Note, however, that what matters is not the
number of states, but, the number of states that have significant
occupation.)
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Sign Problem in FCIQMC/SQMC

Spencer, Blunt, Foulkes, J. Chem. Phys. (2012)

Kolodrubetz, Spencer, Clark, Foulkes, J. Chem. Phys. (2013)

1. The instability gap is given by the difference in the dominant
eigenvalues of the projector, and, those of the projector with all
off-diagonal elements replaced by their absolute values.

2. More than 1 Hartree product in a given initial determinant may connect
via P (or H) to a given Hartree product in a final determinant. The
instability gap is smaller in 2nd quantization than in 1st quantization if
there are internal cancellations within these contributions, otherwise it is
the same as in 1st quantization.
For example, it is the same in lattice real-space Coulomb systems, real-
and momentum-space Hubbard models, but, is different for
orbital-space Coulomb systems.
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Sign Problem in FCIQMC/SQMC

These papers did not point out that even when the instability gap is the
same, there are two important advantages of 2nd quantization:

1. Since the Hilbert space is N! times smaller in 2nd quantization,
cancellation are much more effective.

2. In first quantization, one of the two Bosonic populations will dominate
and the signal to noise will go to zero even in the limit of an infinite
population, unless additional steps are taken to prevent that.

Using a large population and cancellations, it is possible to
get a finite signal to noise ratio in 2nd quantization but not
in 1st quantization (unless some further constraints are
imposed).

Original attempts at using cancellation to control sign problem (in
continuum problems): Mal Kalos and coworkers (David Arnow (1982),
Shiwei Zhang, Francesco Pederiva, ...)
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Comparison of DMC with FCIQMC/SQMC

DMC (walk in electron coordinate space) FCIQMC/SQMC (walk in determinant space)

Severe Fermion sign problem due to growth Less severe Fermion sign problem due to
of Bosonic component relative to Fermionic. opposite sign walkers being spawned on

the same determinant

Fixed-node approximation needed for Walker cancellation, large population,
stable algorithm. initiator approximation needed for stable

algorithm.
Exact if ΨT nodes exact. Exact in ∞-population limit.

Infinite basis. Finite basis. (Same basis set dependence
as in other quantum chemistry methods.

Computational cost is low-order polynomial Computational cost is exponential in N but
in N with much smaller exponent than full CI

Need to use pseudopotentials for large Z . Can easily do frozen-core
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Semistochastic Quantum Monte Carlo (SQMC)

Frank Petruzielo, Adam Holmes, Hitesh Changlani, Peter Nightingale, CJU, PRL 2012

SQMC is hybrid of Exact Diagonalization and QMC

Exact diagonalization has no statistical error or sign problem but is limited to a

small number of states (∼ 1010 on a single core).

QMC has statistical errors and a sign problem but can employ a much larger number

of states.

SQMC combines to some extent the advantages of the above by doing a

deterministic projection in a small set of important states and stochastic projection

in the rest of the space. It has a much smaller statistical error than stochastic

projection and can employ a large number of states.

More generally Semistochastic Projection is an efficient way to find the dominant

eigenvalue and corresponding expectation values of any large sparse matrix that has

much of its spectral weight on a manageable number of states.
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Semistochastic Projection

The part of the projection with both indices in the deterministic part is done
deterministically. The part of the projection with either index in the
stochastic part is done stochastically.

P = PD + PS

PD
ij =

{

Pij , i , j ∈ D

0, otherwise
PS = P − PD
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Diagonal elements in P
S

The contribution to the walker weight on |φj〉, with j ∈ S, is

Pjjwj(t) = [1 + τ(ET − Hjj)]wj(t)

Off-diagonal elements in P
S

Weight wi is divided amongst ni = max(⌊wi⌉, 1) walkers of wt. wi/ni .
For each walker on |φi 〉, a move to |φj〉 6= |φi 〉 is proposed with probability
Tji > 0, (

∑

j Tji = 1), where T is the proposal matrix.

The magnitude of the contribution to the walker weight on |φj〉 from a single
walker on |φi 〉 is







0, i , j ∈ D
Pji

Tji

wi (t)

ni (t)
= −τ

Hji

Tji

wi (t)

ni (t)
otherwise
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Elements in P
D

The contribution to the weight on a deterministic state, |φj〉, (j ∈ D), from
all deterministic states is simply

wj(t + 1) =
∑

i∈D

PD
ji wi (t).

PD is stored and applied as a sparse matrix
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Construction of deterministic space and ΨT

Construction of deterministic space and ΨT is done once and for all before
start of MC run.

1. Start with a likely state, e.g., Hartree-Fock.
2. Construct all connected states if not too many, or, all connected states

that involve excitations to lower lying orbitals
3. Diagonalize using Lanczos
4. Construct connections to the states with the highest absolute weights
5. iterate

For some systems iterating 2 or 3 times can give considerable gain.
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Semistochastic Projection

Walkers have a label (bit string of orbital occupation numbers) and signed
real weights.

Project Do deterministic and stochastic projection

Sort or Hash Walker labels are sorted.

Merge Walkers on the same determinant are merged

Initiator Use initiator criterion to discard some newly spawned walkers.

Join Because we use real weights, there are many walkers with small weights.
Join stochastic space walkers on different determinants using unbiased
algorithm.

Update Energy Used stored EL components to update energy estimator. So
EL never needs to be computed during body of run.

The only additional steps are the deterministic projection and the “join” step.
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SQMC
Some differences between SQMC and FCIQMC or PMC:

1. Deterministic projection in part of space
2. Multideterminantal ΨT, particularly important for strongly correlated

states
3. Real (rather than integer) weights, |ψ(t)〉 =

∑N
i=1 wi (t)|φi 〉

4. Graduated initiator, threshold = i dp, where d is the number of moves
since last visit to deterministic space (Usually choose, i , p = 1)
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Test Cases
Test the ideas on:

1. 2-D Fermion Hubbard model on 8× 8 lattice
2. small molecules

Why Hubbard?

1. Generally accepted as an interesting many-body system that exhibits a
variety of phenomena and is extremely hard to solve.

2. Matrix elements can be computed quickly
3. Can go from very weakly correlated to very strongly correlated by

turning a single knob, U. Large U model much more challenging than
small molecules.

4. Can study effect of changing number of electrons, N, easily.
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Efficiency Gains in 8× 8 Hubbard Model, N = 10
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Energy versus average number of occupied
determinants, 8× 8 Hubbard, N = 50, U = 1
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Energy versus average number of occupied
determinants, 8× 8 Hubbard, N = 10, U = 4
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Efficiency gain for C2 (3− ζ basis)

from semistochastic projection and ΨT

 0

 200

 400

 600

 800

 1000

 1  10  100  1000  10000  100000

Ef
fic

ien
cy

 α
 (E

rro
r2  × 

tim
e)

-1

|D|

|T|=1 |T|=4282 |T|=165 |T|=1766

Wavefns. with 165 or 1766 dets. containing some 4th-order excit. are much more

efficient than wavefn. with 4282 dets. containing only upto 2nd -order excit.
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Ongoing/Future Work on SQMC
Semistochastic projection plus multideterminantal ΨT results in about 3 orders of
magnitude gain in efficiency.
In addition the initiator bias is often reduced.
Even with these improvements the method is very expensive.
However, there are still many improvements that can be made, including:

1. choice of basis, including using ΨT as a basis state

2. better deterministic space, trial wavefunctions, ΨT, and, guiding wavefunctions, ΨG,
e.g., Matrix Product States (Garnet Chan), Coupled Cluster (Alessandro Roggero and
Francesco Pederiva)

3. use exponential projector to increase average time step (Bryan Clark, Alessandro
Roggero and Francesco Pederiva)

4. use F12 methods to improve basis convergence (with Takeshi Yanai, Garnet Chan,
George Booth, Sandeep Sharma, Miguel Morales)

5. embedding (Garnet Chan, George Booth)

6. excited states: 1) projecting out lower states (Ohtsuka and Nagase,
2) dividing Hilbert space into a small and a large piece and calculating an effective
Hamiltonian in the small space, Ten-no,
3) using modified projector, 1+ τ(ET − Ĥ)2, to target desired state, Booth and Chan.
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Derivatives of FN-PMC energies

Examples of derivatives of interest are:

1. derivative wrt parameters of the wavefn., needed to optimize the VMC
or PMC energy for given geometry

2. derivative wrt nuclear coordinates, needed to optimize the geometry
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Almost all errors reduced by optimizing trial
wavefunctions

1. Statistical error in EVMC and EDMC (both the rms fluctuations of EL

and the autocorrelation time)
2. EVMC

3. Fixed-node error in EDMC (nodes move during optimization). Fixed
node errors can be LARGE. For C2, FN error is 1.3 eV for total energy
and 0.7 eV for well-depth. However, optimized multidet. wavefn has FN
error that is better than chemical accuracy.

4. Time-step error in DMC (from Trotter-Suzuki approximation)
5. Population control error in DMC
6. Pseudopotential locality error in DMC when using nonlocal

pseudopotentials
7. Error of observables that do not commute with the Hamiltonian (mixed

estimators, 〈ψFN|Â|ψ〉 not exact even for nodeless ψFN, ψ).
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Measures of goodness of variational wave functions

min EVMC =
〈ψ|H|ψ〉

〈ψ|ψ〉
= 〈EL〉ψ2

min σ2VMC =
〈ψ|(H − ET)

2|ψ〉

〈ψ|ψ〉
=

〈
E 2
L(Ri )

〉

ψ2 − 〈EL(Ri )〉
2
ψ2

max Ω2 =
| 〈ψFN|ψ〉 |

2

〈ψFN|ψFN〉 〈ψ|ψ〉
=

〈
ψFN

ψ

〉2

ψ2
〈∣
∣
∣
ψFN

ψ

∣
∣
∣

2
〉

ψ2

min EDMC =
〈ψFN|H|ψ〉

〈ψFN|ψ〉
= 〈EL〉|ψψFN|

For an infinitely flexible wave function all optimizations will yield the exact

wavefunction (except that minimizing σ could yield an excited state) but for
the imperfect functional forms used in practice they differ.
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Variance vs. Energy

σ2 =

Nconf∑

i=1

(
HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑

i=1

HΨT(Ri )

ΨT(Ri )

Optimized
Variance

Energies

Original

Energies

Energy
Optimized
Energies

Eav

Eav Eexact
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Take-home Message

Energy optimization methods that minimize the energy
evaluated on finite sample will yield poor energies on other
samples, unless the sample used to do the minimization is
very large.
So, efficient energy optimization methods do NOT optimize
the energy evaluated on a finite sample, although they do
minimize the energy in the limit of an infinite sample.
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Ingredients of efficient optimization methods

Efficient energy and variance optimization methods are based on standard
optimization methods, the Newton method, and, the linear method
(generalized eigenvalue problem), but with significant extensions, mostly to
allow them to work in a stochastic approach.

1. Add terms that have zero expectation value for an infinite sample, but,
greatly reduce the noise for a finite sample. CJU and C. Filippi, PRL
2005

2. Although the true Hamiltonian is symmetric, for a finite sample a
nonsymmetric Hamiltonian satisfies a strong zero-variance principle and
gives much smaller fluctuations. If the space is closed under the action
of H then there is no noise the parameters, regardless of the sample,
provided that it is larger than the number of parameters. M.P.
Nightingale and Melik-Alaverdian, PRL 2001

3. Extension of the linear method to nonlinear parameters. CJU, J.
Toulouse, C. Filippi and S. Sorella, PRL 2007; J. Toulouse and CJU
JCP 2007, 2008

4. Automatic procedure for choosing size of moves and recovering from
bad moves.
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Derivatives of the Energy
Examples of derivatives of interest are:

1. derivative wrt parameters of the wavefn., needed to optimize the VMC or PMC
energy for given geometry

2. derivative wrt nuclear coordinates, needed to optimize the geometry

E =

∫
dR ρ(R) EL(R)
∫
dR ρ(R)

≈

∑Neq+NMC

n=Neq+1 EL(Rn)

NMC

≡ 〈EL(Rn)〉ρ

where 〈X (Rn)〉ρ denotes

∑Neq+NMC
n=Neq+1 X (Rn)

NMC
, with points Rn sampled from ρ(R)

∫

dR ρ(R)
.

Denoting the derivative wrt the i th parameter by subscript i ,

Ei =

∫
dR ρ(R)

((
EL(R)− E

)
ρi (R)
ρ(R) + EL,i (R)

)

∫
dR ρ(R)

=

∑Neq+NMC

n=Neq+1

((
EL(Rn)− E

)
ρi (Rn)
ρ(Rn)

+ EL,i (Rn)
)

NMC

≡

〈(

EL(Rn)− E
)ρi (Rn)

ρ(Rn)

〉

ρ

+
〈

EL,i (Rn)
〉

ρ
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Derivatives of the VMC Energy

Ei =

〈(

EL(Rn)− E
)ρi (Rn)

ρ(Rn)

〉

ρ

+ 〈EL,i (Rn)〉ρ

VMC: ρ known explicitly: ρ(R) = ψ2(R)

Ei = 2

〈(

EL(Rn)− E
)ψi (Rn)

ψ(Rn)

〉

ψ2

+ 〈EL,i (Rn)〉ψ2

If Ĥ is indep of parameter i , then 〈EL,i (Rn)〉ψ2 = 0 by hermiticity, so

Ei = 2

〈(

EL(Rn)− E
)ψi (Rn)

ψ(Rn)

〉

ψ2
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Straightforward derivatives of the PMC Energy

Ei =

〈(

EL(Rn)− E
)ρi (Rn)

ρ(Rn)

〉

ψψFN

+ 〈EL,i (Rn)〉ψψFN

PMC: ρ from path integral: ρ(Rn) =

∫ (
∏n−1

k=0 dRk P(Rk+1,Rk)
)

ρ̃(R0)

Ei =

〈

(

EL(Rn)− E

)

(

n−1
∑

k=0

Pi (Rk+1,Rk)

P(Rk+1,Rk)
+
ρ̃i (R0)

ρ̃(R0)

)〉

ψψFN

+
〈

EL,i (Rn)
〉

ψψFN

=

〈

(

EL(Rn)− E

)

n−1
∑

k=0

Pi (Rk+1,Rk)

P(Rk+1,Rk)

〉

ψψFN

+
〈

EL,i (Rn)
〉

ψψFN

∵ covar
(

EL(Rn),
ρ̃i (R0)

ρ̃(R0)

)

= 0

Log derivatives of both the stochastic part (drift-diffusion for DMC) and the reweighting
part of P appear.

Note that although
(

∑n−1
k=0

Pi (Rk+1,Rk )

P(Rk+1,Rk )

)

→ ∞ for n → ∞,
〈(

EL(Rn)− E

)(

∑n−1
k=0

Pi (Rk+1,Rk )

P(Rk+1,Rk )

)〉

ψψFN

is finite. However it has infinite variance, so

replace
∑n−1

k=0 by
∑n−1

k=n−m
, where m is a few times Tcorr.

Exact but noisy.
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Efficient derivatives of the PMC Energy
More efficient method can be derived using:

1. The FN projector can be written as the product of a stochastic matrix, T , and
a diagonal reweighting matrix. (In continuum, a diagonal matrix on each side
of stochastic matrix.)

2. The equilibrium distribution of the stochastic matrix is known!

Continuous Real Space (DMC): equil. dist.: ψ2(R)

Follows from plugging in ψ2(R) into importance-sampled Schrödinger Eq. omitting
reweighting term.

Discrete Space: equil. dist.: ψ2(R) PL(R)

T (Ri,Rj) =
P̃(Ri,Rj)

PL(Rj)
, PL(Rj) =

∑

i

P̃(Ri,Rj) =

∑

i
ψ(Ri)P(Ri,Rj)

ψ(Rj)
by def. of stochastic matrix

Proof:

∑

j

T (Ri,Rj) ψ
2(Rj) PL(Rj) =

∑

j

ψ(Ri)
P(Ri,Rj)

✘✘✘
PL(Rj)

1

✘✘✘ψ(Rj)
ψ✄2(Rj)✘✘✘

PL(Rj) = ψ(Ri)
∑

j

P(Ri,Rj)ψ(Rj)

= ψ
2(Ri)PL(Ri) QED
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Efficient derivatives of the PMC Energy
Continuous Space:

E =

〈

ψ2(Rn) Wn EL(Rn)
〉

〈 ψ2(Rn) Wn 〉
=
〈

EL(Rn)
〉

ψψFN
(1)

where Wn =

n−1
∏

k=n−m

w(Rk+1,Rk)

Ei =

〈

(

EL(Rn)− E

)

(

2
ψi (Rn)

ψ(Rn)
+

n−1
∑

k=n−m

wi (Rk+1,Rk)

w(Rk+1,Rk)

)〉

ψψFN

+
〈

EL,i (Rn)
〉

ψψFN

Discrete Space:

E =

〈

ψ2(Rn) PL(Rn) Wn EL(Rn)
〉

〈 ψ2(Rn) PL(Rn) Wn 〉
=
〈

EL(Rn)
〉

ψψFN
(2)

where Wn =

n−1
∏

k=n−m

w(Rk+1,Rk) =

n−1
∏

k=n−m

PL(Rk), so, PL(Rn) Wn =
n
∏

k=n−m

PL(Rk)

Ei =

〈

(

EL(Rn)− E

)

(

2
ψi (Rn)

ψ(Rn)
+

n
∑

k=n−m

PL,i (Rk)

PL(Rk)

)〉

ψψFN

+
〈

EL,i (Rn)
〉

ψψFN
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Questions

1. Are the above expressions for Ei exact or approximate? When Claudia Filippi and I
presented the finite-difference version of this for forces in 2000, we said it was
approximate, and everyone else subsequently said it was approximate, but I don’t see
why any more. In Eqs. 2 and 2 the only factors that do not depend on Rn are the
Wn. So one can average over all paths that end at Rn and there is no issue of
product of averages not being the average of products.

2. Of the 3 terms in the expressions for Ei , the 2nd term is the noisiest one since it

involves a sum over the path. However, I have 2 interesting observations, based on

which it may be possible to make an approximation that eliminates that term.

1 When the fixed-node projector is independent of the parameter being
varied, the 2nd term equals the 3rd term and each equals −1/2 the 1st

term. (Of course the sum must be zero, since, if projector is independent
of the parameter, the derivative of the energy must be zero.

2 When ψ = ψ0, of course Ei = 0 and in fact each of the 3 terms is 0. As
ψ → ψ0, the 2nd and 3rd terms are equal to linear order in the deviation.
This is an empirical observation. Can we prove it?

Based on these 2 observations (first one is provable), it may be a reasonably good
approximation to just replace the 2nd term by the 3rd term.

Cyrus J. Umrigar
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