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Why do we need even more pseudopotentials?

Ultrasoft pseudopotentials are not applicable in QMC or Quantum
chemistry

Well-established libraries provide DFT or HF pseudopotentials

None are available constructed from explicitly correlated atoms & ions
Assessment of pseudopotentials is often for atoms only

Assessment of pseudopotentials usually excludes correlation effects
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Pseudopotentials

Removing inert core electrons is physically justified and successful
Reduce computational cost a lot

Removes singularity in the electron-ion potential (eg QMC)

Pseudopotentials are not unique, so there are many to choose from

but there are problems ...
Pseudopotential error is uncontrolled

Underlying theory is a mean-field theory

No many-body pseudopotential theory is available

Limited available error data for pseudopotentials in CCSD(T) or QMC

Failure for plane-wave calculations can be catastrophic - ‘ghost states’
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New correlated electron pseudopotential - CEPPs

¢ Define pseudopotentials using pseudo-density matrix

o Make pseudopotentials from explicitly correlated atoms
e Generate for first row atoms

e Generate for 3d-transition metal atoms

...and test their performance:
e Compare all-electron and pseudopotential results
e Measure accuracy for small molecules
e CCSD(T) for correlation of valence electrons
e Geometry, De, and ZPVE

"Trail and Needs, J. Chem. Phys. 139, 014101 (2013)



Introduction Norm-conserving pseudopotentials in mean-field theory Correlated electron pseudopotentials Results

Mean-field pseudopotentials

—Zr

r (a.u.)

1) Coulomb potential and atomic number defines atom
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Mean-field pseudopotentials

—Zr
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r (a.u.)

2) Solve for one orbital per electron with mean-field theory

Conclusions
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Mean-field pseudopotentials
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r (a.u.)

3) Define a core region and contract core orbitals into core region
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Mean-field pseudopotentials

215 | r ]

r (a.u.)

4) Delete orbitals in core region, preserving orbitals outside

e This is norm-conservation as applied in mean-field theory
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Mean-field pseudopotentials

r (a.u.)

5) Redefine valence orbitals in core region to provide a pseudo-atom
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Mean-field pseudopotentials
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6) Invert mean-field theory to make an effective potential

Atomic GS with effective potential is the pseudo-atom
Boundary conditions at r = r; reproduced exactly for GS atom
Boundary conditions at r = r, approximately correct to 15 order
Does not include variation of mean-field



Correlated electron pseudopotentials

Generalisation to Many-body wave functions

Generalisation to interacting electrons is non-trivial:

e Orbitals are not unique

e Many orbitals with partial occupation, or

e Wave functions not defined using orbitals
¢ Division into core and valence is unclear

Approach is to:

¢ Define a pseudo-atom density-matrix from a multideterminant AE atom
wave function

e Invert a SE to extract an effective potential - the Correlated Electron
Pseudopotential (CEPP)
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n-electron pseudo atom from a p-electron atom
AE many-body wave function p-electrons and n-valence electrons:

Tp) = ZWI i

" = (g)/dr,,+1...rpr”(r1...rn,r,,+1...rp;rq...rg,r,,+1...rp)

e p-body density matrix " = w*w
e n-body density matrix obtained by reduction

=

In Y| > re
pp —

[moder  Otherwise
Conserving density matrix outside of core is many-body equivalent of
norm-conservation 2

e Smoothatr=r.

e Normalises to n-electrons

2P H.Acioli and D.M.Ceperly, J.Chem.Phys, 100, 8169 (1994)
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n-electron pseudo atom from a p-electron atom

e [moges Cannot be equivalent to HF pseudopotential

o All orbitals contribute outside of core region
This can be fixed by using determinants constructed from Natural Orbitals
(NOs):

e Eigenstates of 15! order density matrix {v;, 0;}

e 0 closest to step-function of all orbitals choices

e Set largest (p — n) o;’s as core orbitals

e Set core orbitals to zero outside of core region

= Modified pseudo-density i,
The norm-conserving HF pseudo-atom is included in this definition
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n-electron pseudo atom from a p-electron atom

We go no further for the general n-valence electrons case:

e Definition of T g is not trivial

e ', — Ve inversion is non trivial
e V. is non-local over all space

o Vs is n-body potential

Solution?
e n =1 for pseudopotential construction - make them from ions
e Poor transferability between ionic states occurs for KS-DFT not HF

e View the single valence electrons as a probe to measure 1-body
scattering properties of the core
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1-electron pseudo-atom from a p-electron atom

1-electron pseudo-atom density:

L S o r>r
¢2

r= r<re,

Model ¢ in the core region:

6
é=r"exp {Z Aok er]
pars

Parameters apx from:
e Normalisation
o Continuity of value and derivatives at r;
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Inversion of pseudo density

C+3 (1 S)
1
I 11 111
< o5} ]
0 0 Te 2..5 To 5
r (a.u.)

Core regions /, region /I, and asymptotic region /I

e Region /lI: use asymptotic form for a polarizable ionic core

Z, 1«
Vin=-"7"2n

e Corecharge Z, =Z —(p—n)
e Dipole core polarizability «

Conclusions
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Inversion of pseudo density

c('s)
1
I I 111
< 05 .
0 0 Te 2..5 To 5
r (a.u.)

Core regions /, region /I, and asymptotic region //I

e Region /I: directly invert one-body Schrédinger equation

11 2 1ii+1)

Vi=-—
"= 2,172 dre 2 r

e ¢ from continuity condition Vi(ro) = Viu(n)
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Inversion of pseudo density

C+3 (1 S)
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0 0 Te 2..5 To 5

Core regions /, region /I, and asymptotic region /Il

e Region /: directly invert one-body Schrédinger equation

20 1I(1+1)
G 3

Vi= 2 r

11d
2¢

e casinregion //

Conclusions
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Inversion of pseudo density
C+3 (1 871 P71 D)
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r (a.u.)

NOs from multideterminant AE using ATSP2K
Orbitals and determinant coefficients relaxed
(n — p) core orbitals fixed to neutral atom orbitals
Channel L from 'L state
Breit-Pauli relativistic terms for transition metals
Active space defined using:

e 2 excitations, (n,/)=(1...7,0...6)

e Channels s-d for 1st row atoms

e Channels s-f for 3d-transition metal atoms
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Core Polarization Potential
Core Polarization Potential (CPP) goes beyond 1-body pseudopotential
semi-empirically
Veff - [ch + Ve] + [Ve—e + Ve—l + VI—/]
1-body, 2-body and core-core interactions
Example calculation [Muller and Meyer, 1983] for Kz using
pseudopotentials, Cl, an CPP:

K,

20

10

e A

V;:v +‘/c +V;,—c Jr‘/I—e JF‘/I—I

D. (%)

CEPPs provides ab initio 1-body part [V + Ve]
Strong cancellation so keep CPP [Ve_e + Ve + Vi_|]
Define VCEFP = V, — Ve

Use VEFF with CPP
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Parameterization

6
{/CEPP _ ngt g—agr? _ | Zv/T+ Vigey | = local
Vit = ;Aq/f de " = { VP V| £ focal

local

Penalty function (1):
%1 = (o1l [2lB0] — alod (o] lon

e (¢, €) is 1-electron eigenstate for tabulated CEPP
° (4"3/, €/) is 1-electron eigenstate for parameterized CEPP

Penalty function (2):
5

o= (4i—en)

i=1

e ¢ is energy for i state of tabulated CEPP
e ¢ is energy for i state of parameterized CEPP
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CEPPs generated

Correlated MCHF 15 row ions and 3d-transition metal ions:

H
[He] L  Be™" B? Cc® N* 0 Ff*®
[Ne] SC+10 Ti+11 V+12 Cr+13 Mn+14 Fe+15

CEPPs are:
e ab initio description of one-body part of core-electron interaction
e Parameterized pseudopotentials for use with CPPs
e CPPs contribute their many-body part only



Excitation energies for Li
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Excitation energies compared with experiment
Difference between CEPP energies and experiment
Parameterization is successful

Within chemical accuracy (< 0.1 kcal.mol™")

Results



Excitation energies for F+6

+50 Parameterised --—--©---
Tabulated —e—
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ace
€nl
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-10.0
1

lon excitation energies compared with experiment
Difference between CEPP and experiment
Parameterization is successful

For ionization energy:

3.2 kcal.mol~" of ‘error’ from neutral atom core
4.3 kecal.mol~" of ‘error’ from non-relativistic

Results
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Molecular properties

CCSD(T) [Molpro] with CEPPs

All-electron

TNDF shape consistent HF pseudopotentials
BFD energy consistent HF pseudopotentials

Quantities to evaluate and compare:
e Optimum geometries
o Dissociation energies (De)
e Zero-point vibrational energies (ZPVE)
CCSD(T):
e Uncontracted basis sets (aug-cc-pVnZ)
e State averaging for transition metal molecules when required
o Extrapolate to basis set limit for energies
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Geometries: 15! row neutral G2 set

-0.02 ¢ ‘Accurate’
TNDF —e—
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e Deviation from AE similar for TNDF, BFD, and CEPPs (MAD ~ 0.004 A)
« Almost all errors < 0.01 A

o Deviation of AE from experiment is similar - MAD ~ 0.005 A

= All approach chemical accuracy for optimum geometries
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Introduction erving pseudopotentials in mean-field theory Correlat
Dissociation energies: 15 row neutral G2 set
‘1 -—_—
Z o
G
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e CEPP MAD 0.6 kcal.mol ™"
o TNDF MAD 2.0 kcal.mol~!
e BFD MAD 2.2 kcal.mol™'
=- CEPPs consistently and significantly more accurate than TNDF or BFD
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AZPVE (kcal.mol™!)

Norm-conserving pseudopotentials in mean-field theory Correlated electron pseudopotentials Results Conclusions

ZPVEs: 15! row neutral G2 set

‘Accurate’
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e Deviation from AE not significant for any potentials
* All errors < 0.13 kcal.mol ™"
o Deviation of AE from experiment is greater - anharmonic H bonds
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Geometries: 3d-transition metal molecules

Large [Ar] core TNDF

Conclusions

"""""""""""""""""" L |

.
-— 4
TNDF (LC) —e—
0.6 L= N N N N N N N N N N N N N N N N L L { s N
& & . b 2, b 2 b R 2, 2, b 2, 2. e} [e} 2, 2, “© -
R T T N N N A - T N 2 4 0% % % % % % %
o % % 0 % % % %, 0 G I 2 o0 % % %o

v v v 2



Introduction Norm-conserving pseudopotentials in mean-field theory Correlated electron pseudopotentials Results Conclusions

Dissociation energies: 3d-transition metal molecules

Large [Ar]core TNDF
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ZPVEs: 3d-transition metal molecules

Large [Ar] core TNDF
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3d-transition metal molecules

Better pseudopotentials and better testing required

Small [Ne] cores required

Include relativistic core effects

Dipole core polarizability is available in the literature

Examine Sc—Fe molecules where configurations available in literature

Transition metal CEPPs from very ionised atoms: Sc*'° to Fe*'®
Strong test of ion-molecule transferability
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Geometries: 3d-transition metal molecules
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e Deviation from AE least for CEPPs (MAD 0.004, 0.008, 0.011 A for
CEPP, BFD, TNDF)

o All CEPP errors < 0.01 A

e TiO, bond angle, and large TNDF, BFD error for MnN
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Norm-conserving pseudopotentials in mean-field theory

Introduction
Dissociation energies: 3d-transition metal molecules
0.5
025
%
5 o
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e CEPP MAD 0.03 < 0.043 eV
e TNDF MAD 0.16 eV
e BFD MAD 0.09 eV
= CEPPs consistently and significantly more accurate than TNDF or BFD
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ZPVEs: 3d-transition metal molecules
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Deviation from AE not significant for any potentials
All errors < 110 cm ™!

CEPP MAD 20 cm™'

TNDF MAD 30 cm™'

BFD MAD 10 cm ™"
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Conclusions

CEPPs transfer well from very ionised atomic states to neutral states

CEPPs are significantly more accurate than HF pseudopotentials for
energies in explicitly correlated calculations

CEPPs are accurate for a wide range of molecules

CEPPs are accurate for strongly correlated and complex transition metal
systems



Can we improve on this?

Maybe. ..
e Semi-empirical corrections for the small remaining error
o Take better account of the relativistic Hamiltonian

e Construct CEPPs from n-valence electron ions (n > 1) to provide ab
initio e-e-l interactions
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