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FCIQMC & CCMC in a nutshell

¥(r) = C(7)|Dy) C =S i
Solve iteratively U (1 + 67) = ¢ 975w (7).

FCIQMC samples both the propagator and the wavefunction
representation.

FCIMC&CCMC UEGs $
©0000 00000 00

Alex Thom

FCIQMC, CCMC, and finite electron gases




FCIQMC & CCMC in a nutshell

¥(r) = C(7)|Dy) C =S i
Solve iteratively U (1 + 67) = ¢ 975w (7).

FCIQMC samples both the propagator and the wavefunction
representation.

CCMC uses a different parameterization of the wavefunction.

U(r) = 7| Dy) T =3 tids
U (7 4 67) = e 7 H=-)p (7).

Now we must sample the propagator, exponential, and
representation. Tis represented by discrete excips.
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FCIQMC & CCMC in a nutshell

¥(r) = C(7)|Dy) C = e
Solve iteratively U (1 + 67) = ¢ 975w (7).

FCIQMC samples both the propagator and the wavefunction
representation.

CCMC uses a different parameterization of the wavefunction.

U(r) = "M Dy) T =3, tids
U(1+671) = e TH=5y(7),

Now we must sample the propagator, exponential, and
representation. Tis represented by discrete excips.

CC Theories can be truncated size-consistently at excitation levels.

FCIMC&CCMC UEGs $
©0000 00000 oo

Alex Thom

FCIQMC, CCMC, and finite electron gases



Size Consistency

CccC
1 kcal/mol
S
£
=
€
S e N
©
@
g J
>
<
[
C
w
S E
g
]
-3 1 1 1 L
1077 2 3 7 5 6

Truncation Level

Famdglcafee! = 10 meV UEGs $

O@000 00000 e]e]

Alex Thom

FCIQMC, CCMC, and finite electron gases




Size Consistency
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Size Consistency
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When do they work?

FCIQMC
» Still small systems, but bigger than exact diagonalization.
» Some systems are easy with low plateau (Hubbard low U,
UEG low 75), others hard (high U, rs, alkanes)
» i-FCIQMC, semi-stochastic, real weights make more tractable.
» Still have to try a system to find out if it can be investigated.
CCMC
» Size-consistent excitation level truncation allows much larger
systems to be investigated.
» Plateaux also vary with system difficulty.
» Multi-reference systems are much harder.
» i-CCMC, real weights should all be useful.
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When do they work?

FCIQMC
» Still small systems, but bigger than exact diagonalization.
» Some systems are easy with low plateau (Hubbard low U,
UEG low 75), others hard (high U, rs, alkanes)
» i-FCIQMC, semi-stochastic, real weights make more tractable.
» Still have to try a system to find out if it can be investigated.
CCMC
» Size-consistent excitation level truncation allows much larger
systems to be investigated.
» Plateaux also vary with system difficulty.
» Multi-reference systems are much harder.
» i-CCMC, real weights should all be useful.
We would like to know if it's possible to do a calculation without

having to try. How can we measure difficulty?
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Finding Plateaux
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Finding Plateaux
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In Praise of Automation

» Plateau finding automated at Nex(Tmax) Where

_ Nex
Tmax — Max

T Ng

> Error bars come from standard deviation of 10 largest values.

» Energy analysis automated by fitting form of Nex(7) and
finding equilibrated Nex, No, Eproj and S.
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Finite Electron Gases

» The Uniform Electron Gas comes in many guises.

» Most commonly it is expressed in a periodically repeating cell.
> rs characterises the density.

> Ecorr(Ts) for N — oo is well-known and used for LDA.

> Loos and Gill have been concentrating on UEGs in other
geometries (ring, sphere, glome ...).

» These have different e.o(7s) which can be used to make an
improved density functional.

» Can we use FCIQMC to calculate e¢ope(75)7
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Ringium

» Electrons confined on a
ring radius R.

R » rs =mR/n.

» Kinetic Energy is

712 one-dimensional.

» Coulomb interaction is
through-space (i.e. 1/712)
not around ring.

» HF orbitals just ™.
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Ringium basis

Restricted Hartree—Fock orbitals for My, = 0 are

_ 2mimé |, meZ for odd N
Xm(9) = Wlth{ m = @,nEZ for even N
odd N even N

22— —2
3 __ ___3
2 2
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M indicates the maximum value of m.
1D Coulomb enforces nodes making ringium is spin-blind.
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FCIQMC Plateau heights vs 7,
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FCIQMC Plateau heights vs 7,
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FCIQMC Plateau heights vs 7,
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CCMC Plateau heights vs 7
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CCMC Plateau heights vs 7
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CCMC Plateau heights vs 7y
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CCMC Plateau heights vs 7y
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CCMC Plateau heights vs 7y
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Thoughts

» For 1D and 3D UEG, rapid change of behaviour between easy
and hard at ry = 1.

» As r, increases, both FCIQMC and CCMC reach a constant
plateau height.

» Structure of Hamiltonian dominated by r;! off-diagonal over
ry 2 diagonal.

» CCMC plateaux usually smaller than FCIQMC's.

» 3D UEG with FCIQMC/CCMC probably possible.
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