FCIQMC, CCMC and finite electron gases

Alex Thom

Department of Chemistry, University of Cambridge

FCIQMC & CCMC in a nutshell

$$\begin{split} \Psi(\tau) &= \hat{C}(\tau) |D_0\rangle & \hat{C} = \sum_{\mathbf{i}} c_{\mathbf{i}} \hat{a}_{\mathbf{i}} \\ \text{Solve iteratively } \Psi(\tau + \delta \tau) &= e^{-\delta \tau (\hat{H} - S)} \Psi(\tau). \\ \text{FCIQMC samples both the propagator and the wavefunction} \\ \text{representation.} \end{split}$$

FCIQMC & CCMC in a nutshell

$$\begin{split} \Psi(\tau) &= \hat{C}(\tau) |D_0\rangle & \hat{C} = \sum_{\mathbf{i}} c_{\mathbf{i}} \hat{a}_{\mathbf{i}} \\ \text{Solve iteratively } \Psi(\tau + \delta \tau) &= e^{-\delta \tau (\hat{H} - S)} \Psi(\tau). \\ \text{FCIQMC samples both the propagator and the wavefunction} \\ \text{representation.} \end{split}$$

CCMC uses a different parameterization of the wavefunction.
$$\begin{split} \Psi(\tau) &= e^{\hat{T}(\tau)} |D_0\rangle & \hat{T} = \sum_{\mathbf{i}} t_{\mathbf{i}} \hat{a}_{\mathbf{i}} \\ \Psi(\tau + \delta \tau) &= e^{-\delta \tau (\hat{H} - S)} \Psi(\tau). \\ \text{Now we must sample the propagator, exponential, and} \\ \text{representation.} \quad \hat{T} \text{ is represented by discrete excips.} \end{split}$$

FCIQMC & CCMC in a nutshell

$$\begin{split} \Psi(\tau) &= \hat{C}(\tau) |D_0\rangle & \hat{C} = \sum_{\mathbf{i}} c_{\mathbf{i}} \hat{a}_{\mathbf{i}} \\ \text{Solve iteratively } \Psi(\tau + \delta \tau) &= e^{-\delta \tau (\hat{H} - S)} \Psi(\tau). \\ \text{FCIQMC samples both the propagator and the wavefunction} \\ \text{representation.} \end{split}$$

CCMC uses a different parameterization of the wavefunction.
$$\begin{split} \Psi(\tau) &= e^{\hat{T}(\tau)} |D_0\rangle & \hat{T} = \sum_{\mathbf{i}} t_{\mathbf{i}} \hat{a}_{\mathbf{i}} \\ \Psi(\tau + \delta \tau) &= e^{-\delta \tau (\hat{H} - S)} \Psi(\tau). \end{split}$$
Now we must sample the propagator, exponential, and representation. \hat{T} is represented by discrete excips. CC Theories can be truncated size-consistently at excitation levels.

\$

When do they work?

FCIQMC

- Still small systems, but bigger than exact diagonalization.
- ► Some systems are easy with low plateau (Hubbard low U, UEG low r_s), others hard (high U, r_s, alkanes)
- i-FCIQMC, semi-stochastic, real weights make more tractable.
- ► Still have to try a system to find out if it can be investigated. CCMC
 - Size-consistent excitation level truncation allows much larger systems to be investigated.
 - Plateaux also vary with system difficulty.
 - Multi-reference systems are much harder.
 - i-CCMC, real weights should all be useful.

When do they work?

FCIQMC

- Still small systems, but bigger than exact diagonalization.
- ► Some systems are easy with low plateau (Hubbard low U, UEG low r_s), others hard (high U, r_s, alkanes)
- ▶ i-FCIQMC, semi-stochastic, real weights make more tractable.
- Still have to try a system to find out if it can be investigated.
 CCMC
 - Size-consistent excitation level truncation allows much larger systems to be investigated.
 - Plateaux also vary with system difficulty.
 - Multi-reference systems are much harder.
 - i-CCMC, real weights should all be useful.

00000

We would like to know if it's possible to do a calculation without having to try. How can we measure difficulty?

Finding Plateaux

Ne cc-pVQZ CCSDTQ. space=1.4×10⁷ excitors

\$

Finding Plateaux

Ne cc-pVQZ CCSDTQ. space= 1.4×10^7 excitors

\$

UEGs

In Praise of Automation

 \blacktriangleright Plateau finding automated at $N_{\rm ex}(\tau_{\rm max})$ where

$$\tau_{\max} = \max_{\tau} \frac{N_{\exp}}{N_0}$$

- Error bars come from standard deviation of 10 largest values.
- ▶ Energy analysis automated by fitting form of $N_{\rm ex}(\tau)$ and finding equilibrated $N_{\rm ex}$, N_0 , $E_{\rm proj}$ and S.

Finite Electron Gases

- ► The Uniform Electron Gas comes in many guises.
- Most commonly it is expressed in a periodically repeating cell.
- r_s characterises the density.
- ▶ $\varepsilon_{\rm corr}(r_s)$ for $N \to \infty$ is well-known and used for LDA.
- Loos and Gill have been concentrating on UEGs in other geometries (ring, sphere, glome ...).
- ▶ These have different $\varepsilon_{corr}(r_s)$ which can be used to make an improved density functional.
- Can we use FCIQMC to calculate $\varepsilon_{\text{corr}}(r_s)$?

Ringium

- Electrons confined on a ring radius *R*.
- ► $r_s = \pi R/n$.
- Kinetic Energy is one-dimensional.
- Coulomb interaction is through-space (i.e. 1/r₁₂) not around ring.
- HF orbitals just $e^{im\phi}$.

Ringium basis

Restricted Hartree–Fock orbitals for $M_L = 0$ are $\chi_m(\phi) = e^{2\pi i m \phi} \text{ with } \begin{cases} m \in Z & \text{for odd } N \\ m = \frac{2n+1}{2}, n \in Z & \text{for even } N \end{cases}$ odd Neven N-2 - 2 $-\frac{3}{2}$ — $\frac{3}{2}$ _1 ___ 1 $-\frac{1}{2}$ — $\frac{1}{2}$ -0

M indicates the maximum value of m. 1D Coulomb enforces nodes making ringium is spin-blind.

\$

\$

\$

\$

\$

\$

\$

FCIMC&CCMC

Thoughts

- For 1D and 3D UEG, rapid change of behaviour between easy and hard at $r_s \approx 1$.
- ► As r_s increases, both FCIQMC and CCMC reach a constant plateau height.
- Structure of Hamiltonian dominated by r_s^{-1} off-diagonal over r_s^{-2} diagonal.
- CCMC plateaux usually smaller than FCIQMC's.
- 3D UEG with FCIQMC/CCMC probably possible.

Thanks

- Pierre-François Loos
- James Spencer
- HANDE team
- NECI team

Ruth Franklin James Shepherd

