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à  The correlated  wave function for realistic 
systems: from Hubbard to Hydrogen and Water 

à  Few examples on accuracy and achievements 
      on small molecules H2 (H2O)2 
à  Large number of electrons/long simulations 

with QMC now possible. 
à  MD for realistic  liquid 
à   example on Hydrogen at high pressures 
à  Can we do also liquid water? 

Outline/Motivations 



We assume that HTc superconductivity shows up 
in a correlated systems due to strong correlation. 
The paradigm wave function is the Gutzwiller 
partially projected BCS (Mean Field) wavefunction: 
                ψVMC = exp(−g nR↑

R
∑ nR↓)PN MF

where MF  is the ground state of the BCS hamiltonian

H = [−2(coskx + cosky
k,σ
∑ )−µVMC ]ck,σ

+ ckσ + Δ(coskx − cosky )
k
∑ ck↑

+ c−k↓
+ + h.c.

There are only 3 variational parameters for fk. 

PN BCS = AGP = fkck↑
+ c−k↓

+

k
∑
%

&
'

(

)
*

N /2

0

Variational  Gutzwiller  ansatz 
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Energy minimization Iterations

Important to optimize Jastrow  and BCS toghether 

Qualitative new features appear if Jastrow and BCS  
optimized toghether: RVB insulator or supercond. 

In mean field (BCS) no way to have BCS>0 for U>0 
Theorem Lieb ‘90 
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|MF> may be a standard Slater determinant 
J is the so called Jastrow correlation term: 

 

Generalization of the wave function to continuous 

J = exp g(ri
i< j
∑ , rj )
"

#
$
$

%

&
'
'

The peculiarity of our approach (TurboRVB) is  
to fully optimize |MF> and J in a localized basis  
of simple atomic orbitals (e.g. Gaussians 1s,2p…). 

g is a generic function 
of two el. cooredinates 

ψT = J MF



Generalization to realityà the Hamiltonian is:  

H = −
Δi

2i
∑ −

Z j
ri −

Rjij

∑ +
1
ri −
rj
+

ZiZ j
Ri −

Rji< j

∑

{Ri} are atomic classical coordinates  within the Born-Oppenheimer approximation 
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Given that,  one can apply Variational Monte Carlo
and compute all correlation functions by a statistical method

But how to parametrize the  function  g? 

No further approximation required  fully ab-initio (no U, no double counting) 



e.g.  ψk
a (r ) = exp −Zk | r −


Ra |2"# $%,  i.e. localized atomic orbitals, #λ a,b

kl ∝ # atoms

variational parameters (say~1000) determined by: min
λkl
a ,SD

SD JHJ SD
SD J 2 SD

The ‘’Gutzwiller’’ for realistic systems 

           g(r, !r ) = ulr (
r − !
r )+ λi, j

a,b

a,b,,i, j
∑ ψi

a (r )ψ j
b(!r )

ulr (r) =
1
2

r
1+Br

  "a(b)" labels atom positions Ra (Rb )

The non-homogeneous part a=b is local like Gutzw. 
and useful to decrease # parameters (no 4-body a≠b)  

     



With a very small basis (2 gaussians/atom) one 
gets the essentially exact dispersion for H2   

Quantum Monte Carlo vs DFT, is it worth? In H2 clear 



The main question we want to address: 
 
What happens when we apply large pressure  
to a  hydrogen molecular liquid? 

When the average distance between molecules 
is comparable with their bond length (~1.4 a.u.) 
we have a transition to a system where the  
molecule is no longer defined (atomic).  
According to band theory, from an insulator  
2el/unit (H2)  to an half-filled band 1el./unit (H)à 
Metal, Wigner and Heterington prediction ‘35. 



Example:  DFT failure for hydrogen 



 
 and thanks also to Tapenade (automatic diff.): 
http://www-sop.inria.fr/tropics/tapenade.html 
 
 SS & Luca Capriotti, JCP 133, 234111(2010)  

Algorithmic differentiation helped much 

As we have learned by Car and Parrinello (1998) 
          Phase Diagram of realistic systems à 
Ab-Initio Molecular dynamics with Born-Oppenheimer approx.  

Evaluation of Forces are required within QMC 
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# Water molecules

Cpu time referenced to simple VMC (only energy) 
for computing all 3M force components in water. 

Use of pseudopotentials straightforward 

x 4  



Just to clarify a bit what we mean by AD 
 
Just a black box ‘’programming discipline’’ 
 allowing to compute all derivatives of  
 
 eL (

r1,
r2, ⋅ ⋅ ⋅,

rN ,

R1,

R2 ⋅ ⋅⋅,


RM )

With respect to all 3N electron coordinates 
And the 3M ionic coordinates at the same  
~cost of computing the local energy eL 
And the same  for the wave function. 



Dynamics: 1. Efficient QMC forces 

Check:  Newtonian dynamics of a H2 molecule.  
                            Verlet integrator. 



Dynamics: 2. Generalized Langevin 
We have efficient but still noisy forces. We use Langevin dynamics 
in order to sample the canonical ensamble for the ions. 

Fluctuation - dissipation 

Covariance matrix of the 
forces 

Now the noise does not  prevent the possibility of doing MD. Only 
renormalize the friction! 



Dynamics: 2. Generalized Langevin 

We have efficient but still noisy forces. We use Langevin dynamics 
in order to sample the canonical ensamble for the ions. 
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At large N the first order is evident from the g(r) 

Jump 
T= 600 K 



Liquid-liquid transition 

T= 2300 K 



We find that the molecular fluid is unexpectedly stable and the  

transition towards a fully atomic liquid occurs at much higher pressures.  

Our quantum Monte Carlo phase diagram (  ) for the first time 
 with N=256 Hydrogen, is now much different from DFT!!!! 

Weir (molecular)  
 Experiment 1996 



Comparison small basis/good 
basis 54 atoms rs=1.44  T=1000K 

 increased accuracyà more stable molecular !!!  



Why is so different?               QMC vs DFT     

PES for a single 
molecule inside 
the bulk (54H) 

 
 
 
        

 
 



How to distinguish a metal from insulator? 

One can compute the density matrix: 

            D(r, r ')= ψii∑ (r)ψi (r ')  

 ψi (r) are the optimized molecular orbitals

Metalà Fermi surface à |D(R,r)|~|R-r|-2 

InsulatoràGap à |D(R,r)|~exp(-|R-r|/ξ) 

Thus    |DM |= 1
#atoms

dr3 |∫ D(Ra
Ra

∑ , r) |

Metal |DM|à∞              Insulator |DM|à Finite 



There is some interesting crossover at T=2400K 

But we do not have enough large size for the MIT 



And now few slides on liquid water  

Why water liquid simulation? 

It is fundamental in biological life, 
 e.g. life with No waterà Non sense 
 
Phase diagram of immense difficulties,  
low energy and competing (e.g. Hydrogen bond  
and vdW long range) scales and still many things 
to understand by computer simulations. 
 
DFT problems, g(r) overstructured, eq. density  
large (20% off), supercooled liquid (melting at ~400K) 



Reduction of number of parameters  

ϕa,l,m,n (r) = clmn
a

lmn
∑ ψlmn,a

GTO (r)

In QMC optimization the number of parameters 
is proportional to the dimension of the basis. 
It is useful to reduce them by hybrid contraction 

This is not useful instead in chemistry as the  
molecular HF basis is used instead.   

See A. Zen, Y. Luo, SS and L.Guidoni  JCTC  2013 
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Water dimer test: NB in dynamics we are interested 
 in relative forces, i.e. derivative of binding energy  



Noise is useful!!! 
•  Choice of  

–  Great freedom 
–  properly damping fast 

modes 
–  large time step  
–  reducing the correlation 

time 
•  Our choice 
    estimated by QMC contains 

info of Hessian 
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Δ0 = 8a.u. 300K

DFT has not the covariance of forces and is much 
less efficient (smaller time steps) than QMC  

(fs)   

Water  dimer integration test: 



150K fitting 
up to V2 

1000K fitting 
up to V4 

Following the BO 

Y. Luo, A. Zen and S. Sorella submitted to JCP  



“E pur si muove (and yet it moves)”  (Galileo Galilei) 

G. Mazzola, A. Zen, Y. Luo, L. Guidoni, and S. Sorella in preparation (2014) 
Second order Langevin dynamics of 32 water molecules at 300K with Variational Monte Carlo  
 



Some info on this simulation 
2048 nodes on BG/Q, 30 days simulation: 
 24milion core hours 
Time step = 1.54fs, Total time ~ 10ps 
 
Each step MDà10 Optimization steps   
              ~12000 Variational parameters 
              ~100000 Sampling measurements/step  
       Each sample after 1024 Metropolis step 

A huge computation, impossible without HPC 



A different phylosophy is to use DMC to correct 
DFT (Blyp-2)   Alfe’ et al JCP 2013. 



But the quantum effects should play a role  

i)  Peak positions are not changed by quantum 
ii)  The radial distribution is substantially broaden 

from J. A. Morrone and R.Car PRL, 2008  



QMC water radial 
distribution function 

A. Zen, G. Mazzola,, Y. Luo, L. Guidoni, and S. Sorella in preparation (2014) 

More than 4000 iterations~ 7ps 

Remaining differences:  
Ionic quantum effects? 
More accuracy? 
Size effects?   
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The pressure problem: At the right density the  
average pressure is 0.47Gpa>> 1atm(=10-5Gpa!!!) 

DMC reduces much (and change sign) this value 



Conclusions 
Realistic simulation of liquids are now possible also 
within fully many-body  wave function based 
approach.  256H (64 H2O) are not so far from what is 
currently done within DFT ~500H (128 H2O) 
 

àSeveral applications are now possible, allowing 
 to falsify or improve DFT predictions. 
Liquid water is currently under investigation. 

àPeak positions of the rdf are finally reproduced: 
no other ab-initio first principle simulation is able 
àAccuracy of VMC probably not enough, and also 
quantum effects should play a role.  



•  TurboRVB Quantum Monte Carlo package 
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