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Outline

• Hydrogen phase diagram: an overview and open problems

• many-electrons vs single electrons methods for hydrogen

• Restricted Path Integrals

• DFT-based Molecular Dynamics: BOMD

• QMC-based methods: the Coupled-Electron Ion Monte Carlo

• Nuclear Quantum effects in FPMD

• benchmark of DFT via Quantum Monte Carlo

• Liquid-liquid Phase transition (LLPT)
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Why Hydrogen?

• Hydrogen is the simplest element, i.e. the element with the simplest 
electronic structure

• Hydrogen is the most abundant element in the Universe: the Giant gas 
planets are comprised by 70-90% of hydrogen, plus helium and other 
heavier elements. Developing accurate planetary models requires 
accurate acknowledge of hydrogen Equation of State (EOS).

• Hydrogen is relevant for energy applications: nuclear fusion etc.

• The hydrogen atom and molecule have been the prototype systems in 
developing Quantum Mechanics 

• Hydrogen is the ideal playground to develop and test new theoretical 
approaches and methods

• Being the simplest element, it is desirable to be able to predict its 
properties in a wide range of physical parameters from first-principle.

• Hydrogen under pressure presents a reach and difficult physics.
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-

aries between the gas, liquid and solid phases. The solid cir-

cles show location of critical and triple points. The dashed

lines on the left estimate when fluid hydrogen changes from

H2 to fluid H and then to a classical two component plasma

(TCP). The dotted lines on the above 10
6
bar estimate the

temperature when the electrons become degenerate: the non-

interacting fermi energy EF and 0.1 EF . Also shown are three

phases (I,II,III) of solid H2 which occur as the molecules be-

come more oriented. How precisely hydrogens change from

solid H2 to solid H is not established so it is shown as a grey

box. The line going vertically away from the grey box shows

the separation between the mostly insulating molecular fluid

and the mostly conducting atomic fluid; the first order liquid-

liquid transition ends at a critical point; what is shown at

higher temperatures is a crossover. The almost vertical tran-

sition line at the extreme right of the diagram indicates the

quantum melting of the protons lattice under compression.

tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique difficulties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational efficiency,

are significantly smaller or absent. Furthermore, rela-
tivistic effects are small, hence spin orbit effects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER

EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic

 from J. McMahon, M.A. Morales, C. Pierleoni and D.M. Ceperley, Rev Mod Phys  (2012)
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• At ambient conditions it is molecular and at low temperature its phase 
diagram is dominated by the orto-para separation (Silvera ’80).

• Metallization and molecular dissociation with pressure in the ground 
state was predicted long ago to be at P~25Gpa (Wigner 1935) but 
modern experiments up to 350GPa did not found a metallic state 
(Loubeyre ’02).

• Three different insulating molecular crystal phases has been observed 
for increasing pressure. Recently a forth phase (IV) has been observed 
(Howie et al, 2012)

• The observed reentrant melting of the molecular crystal and the 
molecular dissociation-metallization in the fluid phase, together with the 
large zero point effect on the protons, have suggested the existence of a 
low temperature liquid phase which could separate the molecular 
crystal from the atomic crystal.

• Metallic hydrogen might be a new phase of matter: metallic supefluid 
and superconductor
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tics of the light protons could be important and could
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coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
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our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique difficulties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational efficiency,

are significantly smaller or absent. Furthermore, rela-
tivistic effects are small, hence spin orbit effects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.
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Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
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We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
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methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
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Born-Oppenheimer based methods: 

• solve the electronic Schroedinger equation (ground state only) at fixed nuclei

• compute the statistical mechanics (dynamics) of nuclei with the energy 
(forces) of the instantaneous electronic ground-state (Monte Carlo and Molecular 
Dynamics)

BO Molecular Dynamics (BOMD) (or Car-Parrinello MD):
based on Density Functional Theory (DFT) solution of the electronic problem

Coupled Electron-Ion Monte Carlo (Pierleoni-Ceperley):  uses electronic 
energies from Quantum Monte Carlo (QMC) to sample the nuclear 
configuration space. 
QMC-MD (Sorella): uses forces from QMC to sample nuclear configuration 
space.

Imaginary time path integral methods: restricted-PIMC

hydrogen (Pierleoni et al 1994, Militzer et al 2001)
helium (Militzer 2006, 2008)
Limitations:  only practical for high temperatures (T>10000K)
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Approximated exchange-correlation functionals: 

• Local density LDA: 

• Generalized-Gradient (GGA):

• Non-local functionals:  to correct self-interaction errors and improve exchange

• Dispersion functionals:  to treat dispersion interactions (van-der-Waals)

• A (too) long list of different options .......

in Kohn-Sham DFT the electronic wave function is a Slater determinant of 
single-electron orbitals obtained as the self-consistent solution which minimizes 
the Kohn-Sham functional

‘‘screened’’ by first accepting or rejecting them using a

simple effective potential Veffð ~RÞ:

A1ð ~R ! ~R0Þ ¼ minf1; exp½%!!Veff&g; (34)

where !Veff ¼ Veffð ~R0Þ % Veffð ~RÞ. If the move is accepted,
the energy difference is calculated using QMC and the step
accepted or rejected based on

A2ð ~R ! ~R0Þ ¼ minf1; exp½%ð!% !!VeffÞ % uB&g:
(35)

Since the evaluation of the effective potential is orders of
magnitude faster than the evaluation of the QMC energy
difference, the overhead produced by the prerejection is
negligible. On the other hand, it can significantly increase
the efficiency of the method by eliminating QMC calculations
for ‘‘bad’’ steps and increasing the effective acceptance rate.

Another promising approach for QMC-based FP simula-
tions is that of Attaccalite and Sorella (2008). In this ap-
proach, Langevin dynamics is used to perform a simulation
with forces coming from QMC calculations. Similar to
CEIMC, the forces contain a statistical uncertainty that will
lead to a biased ionic sampling if used in Newtonian dynam-
ics. Instead, they use a modified Langevin algorithm, robust
to noise. They show that it is possible to add Gaussian
correlated noise to the QMC forces, as long as the covariant
matrix of the forces is finite and known. With this method,
they are able to simulate liquid hydrogen close to the disso-
ciation transition and predict a stable molecular liquid at
room temperature at 300 GPa. While this calculation used
VMC forces and did not include twist average boundary
conditions (see the discussion on size effects below), the
method shows great promise as a general purpose QMC-
based first-principle method for arbitrary chemical systems.
Along with CEIMC, this method represents one of the fron-
tiers in the development of next-generation (beyond DFT)
first-principles simulation methods.4

E. DFT-based first-principles simulations

Almost all first-principles simulation methods using a DFT
energy surface are performed with MD, although attempts
have been reported using Monte Carlo methods (McGrath
et al., 2006). There are two general ways to use potential
energy surfaces from DFT in a MD simulation: either a fully
converged calculation for the electrons is performed for every
nuclear position or a unified dynamical approach is used to
propagate both electrons and ions simultaneously. Both ap-
proaches are described below. Before describing the solution
of the ionic problem, we give a brief description of DFT
methods, which form the basis of the first-principles molecu-
lar dynamics (FPMD) approach. For a more detailed discus-
sion of DFT and FPMD methods, see Parr and Weitao (1994),
Fiolhais, Nogueira, and Marques (2003), Martin (2004),
Dykstra (2005), Mattsson et al. (2005), Hafner (2008), and
Marx and Hutter (2009).

1. Density functional theory

Although theories based on functionals of the electron
density have a long history in physics and chemistry, with
the Thomas-Fermi theory as one of the earliest and better
known examples (Fermi, 1927; Thomas, 1927), the term
density functional theory (Parr and Weitao, 1994; Martin,
2004; Kohanoff, 2006) refers to the formulation based on
Hohenberg-Kohn (HK) theorems (Hohenberg and Kohn,
1964) and the Kohn-Sham (KS) ansatz (Kohn and Sham,
1965).5 The first HK theorem states that there is a one-to-
one correspondence between the external potential (in this
case the potential produced by the nuclei) and the ground-
state electronic density. This means that for every wave
function that is the ground state of some Hamiltonian, the
external potential giving rise to it is unique up to an additive
constant. Notice that while the wave function for the many
electron system lives in a 3Ne dimensional space, the electron
density is a function of only the three spatial coordinates.
Thus, in principle, knowledge of the density implies knowl-
edge of the wave function and, in turn, of all the properties of
the system. The second HK theorem states that there exists a
universal energy functional of the density E½n& defined for
any external potential, such that the global minima of this
functional represents the ground-state energy of the system.
The density at the minimum gives the ground-state electronic
density.

One might hope that the HK theorems could simplify the
description of the many electron problem since it uses the
density rather than the full wave function as the fundamental
variable, but, in practice, the universal energy functional is
unknown and there is currently no known accurate way of
extracting properties of electronic systems from the density
alone. The approach of Kohn and Sham (1965) was to replace
the original interacting problem by an auxiliary system de-
fined in terms of noninteracting electrons that is more trac-
table and easier to solve. In their formulation of DFT, which
is the implementation commonly used today, the auxiliary
system is defined such that its ground-state electron density is
the same as the density of the interacting system. This allows
us to write down an explicit form for the energy functional
in terms of the single-body orbitals of the noninteracting
system:

EKS½n& ¼ % 1

2

XN

i¼1

j ~rc ið~rÞj2 þ
Z

d3 ~rnð~rÞVextð~rÞ

þ EH½n& þ Enn þ Exc½n&;

EH½n& ¼
1

2

Z
d3 ~rd3 ~r0

nð~rÞnð~r0Þ
j ~r% ~r0j ; (36)

where c ið~rÞ are the eigenstates of the noninteracting
Hamiltonian, EH is the Hartree energy (the classical electro-
static interaction of the density), Enn is the nuclei-nuclei
interaction energy, and Exc accounts for exchange and
correlation energy. The density of the noninteracting system
is defined by nð~rÞ ¼ PN

i¼1 jc ið~rÞj2.
4Note that in what is called quantum molecular dynamics in the

literature, classical dynamics of the ions is performed with forces
computed with density functional theory.

5We do not describe earlier band theory methods on hydrogen
since those methods have been generally superseded by DFT.
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density is a function of only the three spatial coordinates.
Thus, in principle, knowledge of the density implies knowl-
edge of the wave function and, in turn, of all the properties of
the system. The second HK theorem states that there exists a
universal energy functional of the density E½n& defined for
any external potential, such that the global minima of this
functional represents the ground-state energy of the system.
The density at the minimum gives the ground-state electronic
density.

One might hope that the HK theorems could simplify the
description of the many electron problem since it uses the
density rather than the full wave function as the fundamental
variable, but, in practice, the universal energy functional is
unknown and there is currently no known accurate way of
extracting properties of electronic systems from the density
alone. The approach of Kohn and Sham (1965) was to replace
the original interacting problem by an auxiliary system de-
fined in terms of noninteracting electrons that is more trac-
table and easier to solve. In their formulation of DFT, which
is the implementation commonly used today, the auxiliary
system is defined such that its ground-state electron density is
the same as the density of the interacting system. This allows
us to write down an explicit form for the energy functional
in terms of the single-body orbitals of the noninteracting
system:

EKS½n& ¼ % 1

2

XN

i¼1

j ~rc ið~rÞj2 þ
Z

d3 ~rnð~rÞVextð~rÞ

þ EH½n& þ Enn þ Exc½n&;

EH½n& ¼
1

2

Z
d3 ~rd3 ~r0

nð~rÞnð~r0Þ
j ~r% ~r0j ; (36)

where c ið~rÞ are the eigenstates of the noninteracting
Hamiltonian, EH is the Hartree energy (the classical electro-
static interaction of the density), Enn is the nuclei-nuclei
interaction energy, and Exc accounts for exchange and
correlation energy. The density of the noninteracting system
is defined by nð~rÞ ¼ PN

i¼1 jc ið~rÞj2.
4Note that in what is called quantum molecular dynamics in the

literature, classical dynamics of the ions is performed with forces
computed with density functional theory.

5We do not describe earlier band theory methods on hydrogen
since those methods have been generally superseded by DFT.
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‘‘screened’’ by first accepting or rejecting them using a

simple effective potential Veffð ~RÞ:

A1ð ~R ! ~R0Þ ¼ minf1; exp½%!!Veff&g; (34)

where !Veff ¼ Veffð ~R0Þ % Veffð ~RÞ. If the move is accepted,
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A2ð ~R ! ~R0Þ ¼ minf1; exp½%ð!% !!VeffÞ % uB&g:
(35)

Since the evaluation of the effective potential is orders of
magnitude faster than the evaluation of the QMC energy
difference, the overhead produced by the prerejection is
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methods, which form the basis of the first-principles molecu-
lar dynamics (FPMD) approach. For a more detailed discus-
sion of DFT and FPMD methods, see Parr and Weitao (1994),
Fiolhais, Nogueira, and Marques (2003), Martin (2004),
Dykstra (2005), Mattsson et al. (2005), Hafner (2008), and
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1965).5 The first HK theorem states that there is a one-to-
one correspondence between the external potential (in this
case the potential produced by the nuclei) and the ground-
state electronic density. This means that for every wave
function that is the ground state of some Hamiltonian, the
external potential giving rise to it is unique up to an additive
constant. Notice that while the wave function for the many
electron system lives in a 3Ne dimensional space, the electron
density is a function of only the three spatial coordinates.
Thus, in principle, knowledge of the density implies knowl-
edge of the wave function and, in turn, of all the properties of
the system. The second HK theorem states that there exists a
universal energy functional of the density E½n& defined for
any external potential, such that the global minima of this
functional represents the ground-state energy of the system.
The density at the minimum gives the ground-state electronic
density.

One might hope that the HK theorems could simplify the
description of the many electron problem since it uses the
density rather than the full wave function as the fundamental
variable, but, in practice, the universal energy functional is
unknown and there is currently no known accurate way of
extracting properties of electronic systems from the density
alone. The approach of Kohn and Sham (1965) was to replace
the original interacting problem by an auxiliary system de-
fined in terms of noninteracting electrons that is more trac-
table and easier to solve. In their formulation of DFT, which
is the implementation commonly used today, the auxiliary
system is defined such that its ground-state electron density is
the same as the density of the interacting system. This allows
us to write down an explicit form for the energy functional
in terms of the single-body orbitals of the noninteracting
system:
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where c ið~rÞ are the eigenstates of the noninteracting
Hamiltonian, EH is the Hartree energy (the classical electro-
static interaction of the density), Enn is the nuclei-nuclei
interaction energy, and Exc accounts for exchange and
correlation energy. The density of the noninteracting system
is defined by nð~rÞ ¼ PN

i¼1 jc ið~rÞj2.
4Note that in what is called quantum molecular dynamics in the

literature, classical dynamics of the ions is performed with forces
computed with density functional theory.

5We do not describe earlier band theory methods on hydrogen
since those methods have been generally superseded by DFT.

McMahon et al.: The properties of hydrogen and helium under . . . 1617

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

DFT

venerdì 1 agosto 2014



Advantages:  
• DFT is reasonably fast and accurate 
(often very accurate) in reproducing 
experimental data in many situations
• historically it was a major 
breakthrough in simulation to avoid 
effective potentials
• it is far more transferrable than the 
effective potential approach in particular 
in presence of changes of the chemical 
nature of the material (different 
hybridization)
• electronic dynamical properties can 
also be computed in the single-electron 
theory (optical spectra, transport 
properties....)  

Limitations:  
• DFT misses an internal check on the 
accuracy of the various functionals
• accuracy of the method is based on 
comparison with experiments or more 
accurate quantum methods on specific 
systems
• geometries are generally good (i.e. energy 
minima are ok) but band gaps are generally 
bad as well as energy barriers and excited 
states
• dispersion interactions are accounted in an 
approximated way only 
• major problem at the metal-insulator 
transition
• the approximation is an extra variable to 
chose.

Until very recently the DFT paradigm for applications in dense hydrogen was GGA-
PBE.

DFT
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•  In QMC an analytic form of the many-electron ground state wave function in 
terms of the electronic and nuclear coordinates is assumed and optimized 
based on the Variational Principle of QM (Variational Monte Carlo). 

•  Electronic correlation is explicitely put into the wave function and can be 
improved at will (with enough human effort!!). 

•  Further improvement can be obtained by projecting the optimized wave 
function onto the “exact” many-body ground state (Projection Monte Carlo). 

•  Projection QMC introduces the sign-problem for fermions: we adopt the 
fixed node approximation so that the method is variational with respect to the 
nodes.  

• Dynamical properties (conductivity, etc) are not provided in QMC but can be 
obtained with Correlation Functions QMC (see Lin et al, PRL 103, 256401 (2009))

Quantum Monte Carlo (QMC)
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CEIMC
CEIMC: Metropolis Monte Carlo for finite T ions.  The BO energy in the 
Boltzmann distribution is obtained by a QMC calculation for ground 
state electrons. 

• Ground state electrons:  

• Variation Monte Carlo (VMC) & Reptation Quantum Monte 
Carlo (RQMC)

• Moving the electrons: the bounce algorithm for RQMC

• Energy difference methods 

• Twist Average Boundary Conditions (TABC) within CEIMC to 
reduce electronic (single particle) finite size effects.

• Finite temperature ions: Noisy Monte Carlo  The Penalty Method

• Quantum Protons: Path Integral Monte Carlo (PIMC) within 
CEIMC

• The computational cost of CEIMC (and QMC-MD) is quite higher 
than for BOMD (limited small systems ~100 protons).
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• QMC for fermions exploits the fixed node approximation and the accuracy depends on 
the accuracy of the many body trial wave function.

• Slater-Jastrow form:

• U(R|S) is a (two-body + three-body + ...) correlation factor (bosonic).

• ∑ is a Slater determinant of single electron orbitals

• The nodes are determined by the form of the orbitals only.  They are the most 
important part of the trial function since the nodes are not optimized by projection.

• Hydrogen trial function

• Single electron orbitals obtained from a DFT calculation (with various approxs) for 
each proton configuration.

• Analytical electron-electron and electron-proton backflow transformation (BF) to 
improve the nodes  [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

• Analytical form for the single and 2-body Jastrow within RPA (Gaskell, 1967)

• Addition of numerical single, 2-body, 3-body jastrows and backflow terms (3-body e-
e is not-effective)

• few variational parameters to be optimized (on selected configurations).

CEIMC: trial functions for hydrogen
Trial wave functions: |ΨT >

Slater-Jastrow form

ΨT (R|S) = exp [−U(R|S)]Det
“

Σ↑
”

Det
“

Σ↓
”

U(R) is a (two-body + three-body + . . . ) correlation factor (”pseudopotential”)

Σ↑ is a Slater determinant of single electron orbitals θk("xi, σi|S).

The nodes are determined by the form of the orbitals only. They are the most important

part of the trial function since the nodes are not optimized by projection.

Hydrogen trial function

Single electron orbitals obtained from a band structure(OEP) or LDA(DFT)

calculation for each proton configuration.

Analytical electron-electron backflow transformation (BF) to further improve the

nodes [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

Analytical form for the two body ”pseudopotential” within RPA (Gaskell, 1967)

Common feature: no variational parameters to be optimized at the QMC level

early implementation (Metallic): fully analytical form of the trial function

free electron orbitals + (ee + ep) backflow + (2body + 3body) Jastrow

CNRS Grenoble, 19 May 2008 – p. 23/41

θk(�xi, σi|S)
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-

aries between the gas, liquid and solid phases. The solid cir-

cles show location of critical and triple points. The dashed

lines on the left estimate when fluid hydrogen changes from

H2 to fluid H and then to a classical two component plasma

(TCP). The dotted lines on the above 10
6
bar estimate the

temperature when the electrons become degenerate: the non-

interacting fermi energy EF and 0.1 EF . Also shown are three

phases (I,II,III) of solid H2 which occur as the molecules be-

come more oriented. How precisely hydrogens change from

solid H2 to solid H is not established so it is shown as a grey

box. The line going vertically away from the grey box shows

the separation between the mostly insulating molecular fluid

and the mostly conducting atomic fluid; the first order liquid-

liquid transition ends at a critical point; what is shown at

higher temperatures is a crossover. The almost vertical tran-

sition line at the extreme right of the diagram indicates the

quantum melting of the protons lattice under compression.

tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique difficulties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational efficiency,

are significantly smaller or absent. Furthermore, rela-
tivistic effects are small, hence spin orbit effects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER

EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic

Hydrogen phase diagram

PIMC

BOMD
CEIMC
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FIG. 8 Reentrant melting line of the Phase I. Experimental

data: red crosses (Datchi et al., 2000), green left-triangles

(Gregoryanz et al., 2003), turquoise X’s (Deemyad and Sil-

vera, 2008), violet up-triangles (Eremets and Trojan, 2009)

and purple dashed circles (Subramanian et al., 2011). Theo-

retical predictions: BOMD (orange triangles (Bonev et al.,
2004a)), free-energy calculations (solid black line (Morales

et al., 2010b)). The orange dashed-curve is a fit of the Datchi,

Gregoryanz and Bonev data to a Kechin equation, while the

black dashed curve is a fit to the Morales data using the same

functional form. A stable fluid point predicted by MD us-

ing QMC forces (green star (Attaccalite and Sorella, 2008)).

Shown below the melting curve are the experimental solid

phases (identical to Fig. 3 including recently reported metal-

lic transition (Eremets and Troyan, 2011).

400 GPa. Of course, such extrapolations do not take into
account phase changes in the liquid or solid phases at
higher pressures. These calculations were recently cor-
roborated by Morales et al., 2010b up to a pressure of
200 GPa: the melting line of hydrogen was calculated
by comparing the (DFT) Gibbs free-energy of the liq-
uid and solid molecular phases (Phase I, hcp rotation-
ally disordered). Recent measurements using laser heat-
ing of hydrogen in a DAC (Deemyad and Silvera, 2008)
have observed a maximum and subsequent decrease of
the melting temperature with increasing pressure. These
measurements are consistent with those more recently re-
ported by Eremets and Trojan, 2009; Subramanian et al.,
2011. The various measurements and theoretical predic-
tions are shown in Fig. 8.

The comparison of the experimental data to the DFT
predictions of melting for pressures between 10 and 140
GPa is a gratifying confirmation of their accuracy. How-
ever, we note that at pressures when metallization is oc-
curring on the melting line (estimated to be at about
250 GPa and 500 - 600K), one expects local or semi-local
forms of the assumed DFT functional to bias the results
and predictions using these functionals to be much less

accurate. Also, we note that the effect of the quan-
tum motion of the protons on the melting line tends
to cancel out only if the crystal and liquid phase are
both molecular or both atomic. Otherwise, ZPM of the
protons needs to be taken into account in determining
the melting temperature. Despite this expected inaccu-
racy, the Kechin equation (Kechin, 2004a,b) Tm(K) =
14.025(1 + Pm/a)bexp(−P/c) has been used to extrapo-
late the low pressure data to higher pressures. In Fig.
8, two such extrapolations are reported. The first one,
reported using an orange dashed line, considers experi-
mental points from Datchi et al., 2000 and Gregoryanz
et al., 2003 and FPMD points from Bonev et al., 2004a,
suggesting a = 0.030355, b = 0.59991, c = 137, while the
second one considers only simulation results from free-
energy calculations (Morales et al., 2010b), suggesting
a = 0.1129, b = 0.7155, c = 149. These extrapolations,
suggest that at higher pressure, the molecular crystal
phase might vanish in favor of a low-temperature liquid
phase with very unusual properties (see Section IV.C.2).
However, extrapolations based on the low pressure crys-
tal structures are highly susceptible to error.

5. The Metallization of solid Molecular Hydrogen

Wigner and Huntington, 1935 predicted that hydrogen
would undergo an insulator-to-metal (IM) transition at
sufficiently high pressure. For the general Hamiltonian
in Eq. (1), one can easily show that the potential energy
scales as r−1

s while the kinetic energy as r−2
s . Hence, as

the density and pressure increase (rs → 0), the kinetic
energy will dominate. Since the free particle wavefunc-
tion minimizes the kinetic energy, this implies that any
electronic system will go to an uncorrelated wavefunc-
tion: a simple metal. To determine precisely how and
when hydrogen at low temperature becomes a metal has
been a major question, and, has been termed the “holy
grail” of high-pressure physics.
We note that at non-zero temperature, there is always

some thermal excitation of carriers, and thus some con-
ductivity, so a precise definition of the IM transition is
only possible at zero temperature. In a later section, we
will discuss the shock experimental measurements of the
conductivity of (Nellis et al., 1999; Weir et al., 1996),
where the IM transition was observed at high temper-
ature (∼2600 K) near 140 GPa in the liquid hydrogen
phase. See also recent reviews (Maksimov and Shilov,
1999; Robitaille, 2011).
The early assumption was that the IM transition would

be associated with molecular dissociation to the atomic
state (Abrikosov, 1954; Wigner and Huntington, 1935).
However, Hartree–Fock calculations using the exact ex-
change operator (Ramaker et al., 1975) as well as band-
structure calculations (Friedli and Ashcroft, 1977) sug-
gested that metallization may instead occur in the molec-
ular phase; as change in density causes the molecular
bands to shift around, there can be a band gap clo-

Reentrant melting of phase I and crystalline molecular phases
 from J. McMahon, M.A. Morales, C. Pierleoni and D.M. Ceperley,  Rev Mod Phys  (2012)

• GGA-PBE BOMD is 
accurate below ~200GPa

• PBE predicts band-gap 
closure beyond ~200GPa

•  Experiments reported 
insulating state up to 350GPa 
(Loubeyre)

• Good agreement between 
theory (GGA-PBE) and 
experiments for melting line 
up to ~150GPa  (large 
experimental error bars!) 

• Inclusion of NQE is 
catastrophic !

• More advanced methods 
are needed to address the 
higher pressure region
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GGA-PBE fails to reproduce the reflectivity from experiments across 
the metal-insulator transition (hugoniot of precompressed samples). P. LOUBEYRE et al. PHYSICAL REVIEW B 86, 144115 (2012)
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FIG. 9. (Color online) Change in reflectivity along the Hugoniots
corresponding to different initial densities. The reflectivity is obtained
from VISAR measurements at 532 nm. The color scale, as in
Fig. 2, corresponds to the initial pressure. The dots and triangles
represent H2 and D2 data, respectively. The colored dashed lines are
physically constrained fits based on a Drude model using a Fermi-type
dissociation fraction, as explained in the text.

along with a simple model for each Hugoniot (dashed lines)
which provides some microscopic physical insight into the
sample behavior. Namely, we used a Drude model for the
optical conductivity, assuming the electronic density is directly
proportional to the dissociation fraction and with the electron
relaxation time given by the Ioffe-Regel limit.25 This estimate
of the relaxation time (4.8 × 10−17 s for a H plasma density of
1 mole/cc) is in very good agreement with the quantum Monte
Carlo estimate40 (4.9 × 10−17 s). The dissociation fractions,
extracted along each Hugoniot, correspond roughly to the same
density (see Tables II and III) and they are fitted to a Fermi-type
function as suggested by the ab initio model.14 This Fermi fit
is then used along with the Drude model to calculate the re-
flectivity along the Hugoniot. Shown as dashed lines in Fig. 9,
these calculated reflectivities are thus physically constrained
and serve as much more than a simple guide to the eye.

To our knowledge, all quantum molecular dynamics cal-
culations of the reflectivity versus temperature have been
performed along the principal Hugoniot, corresponding to the
0.3 GPa Hugoniot here. Two calculations are compared in
Fig. 10 with the experimental reflectivity along the 0.3 GPa
Hugoniot. The calculation of Collins et al.9 estimates the
reflectivity versus temperature at 808 nm and 404 nm, whereas
experimental measurements were performed at 532 nm. The
calculation by Holst et al.10 gives reflectivity vs pressure at
808 nm. This was converted to reflectivity versus temperature
using the temperature-pressure relationship along the principle
Hugoniot by the same group.41 A slight difference is seen
between the two calculations due to improved convergence
and treatment of the zero point energy in the calculation by
Holst et al.10 In particular, the onset of reflectivity is given at
approximately 2 kK in Collins’s calculation and 3 kK in that by
Holst et al. The experimentally measured onset of reflectivity is
above 5 kK. That difference is much larger than the frequency
shift in going from 808 nm to 532 nm. The underestimation
of the onset temperature for reflectivity, hence conduction, is
analogous to the underestimation of the electronic energy gap
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FIG. 10. (Color online) Reflectivity versus temperature along
the principal Hugoniot. The black lines are the calculations of the
reflectivity at 808 nm and 404 nm from Collins et al. (Ref. 9) and
Holst et al. (Ref. 10). The yellow symbols and dashed line represent
the experimental data at 532 nm and their fit.

of solid hydrogen by density-functional theory (DFT).42 The
well-known DFT band gap problem at zero temperature is thus
still present here although it was expected to be significantly
reduced at high temperature.43

VII. CONCLUSION

In summary, the use of precompressed diamond-anvil
cell targets for laser-driven shock experiments has enabled
EoS measurements of warm dense hydrogen and deuterium
significantly off of the principal Hugoniot. This data set has
been used to benchmark the most advanced formulation of
the hydrogen EoS based on ab initio calculations. This work
provides an estimate of the level of confidence in the hydrogen
EoS, suggesting better than 8% uncertainty. The onset of
conduction in dense fluid hydrogen has also been investigated
by measurement of optical reflectivity. In the density range
studied here, conduction is seen to be primarily temperature
driven. The onset of conduction takes place experimentally at
about twice the temperature predicted by ab initio calculations.
The rise in reflectivity becomes more sensitive to temperature
with increasing density. This could be an indication of a
possible evolution to the plasma phase transition at higher
densities. In the future, experiments on larger laser facilities
will permit precompressions up to an order of magnitude
higher, allowing measurements along Hugoniot curves that
should cross the predicted PPT line,5 thus providing a
definitive test of this intriguing first-order phase transition.
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Reflectivity is obtained 
from optical conductivity 
calculations through the 
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-

aries between the gas, liquid and solid phases. The solid cir-

cles show location of critical and triple points. The dashed

lines on the left estimate when fluid hydrogen changes from

H2 to fluid H and then to a classical two component plasma

(TCP). The dotted lines on the above 10
6
bar estimate the

temperature when the electrons become degenerate: the non-

interacting fermi energy EF and 0.1 EF . Also shown are three

phases (I,II,III) of solid H2 which occur as the molecules be-

come more oriented. How precisely hydrogens change from

solid H2 to solid H is not established so it is shown as a grey

box. The line going vertically away from the grey box shows

the separation between the mostly insulating molecular fluid

and the mostly conducting atomic fluid; the first order liquid-

liquid transition ends at a critical point; what is shown at

higher temperatures is a crossover. The almost vertical tran-

sition line at the extreme right of the diagram indicates the

quantum melting of the protons lattice under compression.

tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique difficulties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational efficiency,

are significantly smaller or absent. Furthermore, rela-
tivistic effects are small, hence spin orbit effects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER

EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic
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k c1k c2k c3k c4k

1 -0.529586 -2.085591·10−4 -3.365628·10−9 2.294411·10−5

2 2.227221·10−6 -1.452601·10−4 -2.488880·10−9 1.894880·10−5

3 -6.266619·10−5 4.210279·10−4 6.174066·10−9 -5.144879·10−5

4 9.977346·10−2 -6.220508·10−4 -8.564851·10−9 7.499558·10−5

5 -1.437627·10−2 -9.867541·10−5 -1.598083·10−9 1.225739·10−5

TABLE III: Coefficients of the expansion of the free energy; energy in Hartree/atom, temperature in K and density in g cm−3

IV. COMPARISON WITH OTHER METHODS

In order to asses the accuracy of the DFT-MD method
for hydrogen at such extreme conditions we have per-
formed DFT based Born-Oppenheimer Molecular Dy-
namics (BOMD). As in the CEIMC calculations of previ-
ous section, the electrons are assumed to be at zero tem-
perature. The BOMD simulations were performed in the
NVT-ensemble ( weakly coupled with a Berendsen ther-
mostat) using the Qbox code [41]. We used the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional
and a Hamann type [37] local pseudopotential with a core
radius of rc = 0.3 a.u. to represent hydrogen. The sim-
ulations were performed with 250 hydrogen atoms in a
cubic box using a plane-wave cutoff of 90 Ry (115 Ry for
rs ≥ 1.10) with periodic boundary conditions (Γ point).
Corrections to the EOS were added to extrapolate results
to infinite cutoff and to account for the Brillouin zone in-
tegration. To do this we studied 15-20 statistically inde-
pendent static configurations of protons at each density
by using a 4x4x4 grid of k-points with a plane-wave cut-
off of at least 300 Ry. See ref. [38] for additional details
of the BOMD simulations.

Data for energy and pressure obtained by CEIMC and
BOMD are reported in table I. There is a good agreement
between the two methods, especially at higher densities
where the difference in pressure is within error bars. Fig-
ure 3 shows a comparison of the pressure and the energy
between CEIMC simulations and BOMD simulations. At
lower densities, the pressure difference increases reaching
an average value of roughly 5% close to the dissociation
regime (ρ � 0.75g/cm3). There is less reason to expect
good agreement for the energies since DFT uses pseu-
dopotentials and approximate exchange-correlation func-
tionals which can modify the zero of the energy. How-
ever, the temperature and density dependence is well re-
produced with an almost uniform energy shift of 0.8%
in the region of the phase diagram studied. Figure 4
shows the proton-proton radial distribution function for
several thermodynamic conditions as obtained with the
two methods. The observed agreement is again remark-
able. The structure of the liquid is reproduced by BOMD
simulations quite accurately, even the short range corre-
lation peak that develops at the lower temperatures and
higher densities. Figure 5 shows a comparison for the en-
tropy as a function of density along two isotherms. For
densities beyond ρ = 1.4g/cm3, the entropy curves ob-
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FIG. 4: Comparison of radial distribution functions between
BOMD (blue) and CEIMC (red).

tained with the two methods are indistinguishable. In
general, we obtain very good agreement between the two
methods for pressures beyond 600 GPa. At lower pres-
sures, the agreement is not perfect, but still very good,
with BOMD predicting a slightly higher entropy than
CEIMC. We are currently expanding our calculations to
lower density to provide an additional benchmark of the
DFT method close to the molecular dissociation region.

Finally, figure 6 shows a comparison of the pressure di-
vided by the square of the density as a function of density,
obtained with CEIMC, BOMC and the SCVH equation
of state at T=6000 K. We chose this particular quantity
to highlight the differences between the results, since a
direct comparison between CEIMC and BOMD would
produce unnoticeable differences on the scale of the plot.

CEIMC vs. BOMD-GGA(PBE)
Morales, Pierleoni Ceperley, PRE 2010

• CEIMC:  
• 54 protons with 64-96 twist angles. 
• Proton quantum effects are negligible 
(T>2000K)

• BOMD: 
• 250 protons in PBC. 
• GGA-PBE xc functional, Hamann type 
pseudo-potential (rc=0.3 a.u.) 
• energy cutoff of 90-130Ry. 
• Correction to the pressure for static 
confs. with a 4x4x4 grid of k-points and 
300Ry of energy cut-off.

Free energy calculations with CCI from a 
reference state of known free energy.
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to emphasize the differences.

effects of the interpolation. Although the errors in the
SCVH are only observed to be large in a small portion of
the temperature-density range of the model, this region
is crucial for calculating the internal structure of Jupiter,
in particular the size of the core region[2].

V. CONCLUSIONS

In summary, we performed a comprehensive study of
the free energy and the equation of state of warm dense
liquid hydrogen in its atomic phase using energies com-
puted with a quantum Monte Carlo method. After per-
forming finite size corrections and estimating effects of
zero point proton energies, energies and pressures are
computed to an absolute accuracy of a few percent. The
free energy is computed using coupling constant and ther-
modynamic integration. We provide a fit to the free en-
ergy which can be used as input to models of the Jovian
planets. The energies and pressures (Table 1) can be
used to constrain chemical models.

Given the status of DFT as a workhorse for EOS mod-
eling, it is crucial to benchmark its predictions against
more accurate correlated methods. We provide such a
critical test at the conditions relevant for planetary inte-
riors. Our results indicate that DFT-based BOMD simu-
lations provide a very good description of both thermody-
namic and structural properties of hydrogen for 2000K ≤
T ≤ 10000K and densities 0.7gcm−3 ≤ ρ ≤ 2.4gcm−3

with errors in the total energy and pressures of less than
2%, except at densities of less than 1g cm−3 where DFT
pressures are too high by 5%. With current day computer
algorithms and capabilities, EOS calculations for hydro-
gen with a 1% accuracy are close to being achieved.

The equation of state of SCVH, used in the study of
planetary interiors for more than a decade, is shown to
produce pressures in error by 25% in this regime. We
speculate that the errors in the SCVH are due to an in-
accurate modeling of the molecular-atomic (.i.e. PPT)
transition, which is predicted to occur at a lower densi-
ties, but whose effect in the EOS extends up to conditions
investigated here. Because planetary models are sensitive
to details in this regime and at lower pressures during dis-
sociation, a deviation from SCVH will produce a much
larger change in the planetary model, e.g. it is found us-
ing a less compressible EOS that Jupiter has a core mass
of 14-18 earth masses, much larger than SCVH value of
0-7 earth masses [1, 17]. This suggests that planetary
models, particularly of Jupiter, should be reinvestigated
with a more accurate EOS, such as the one presented in
this work.

APPENDIX A: FINITE SIZE EFFECTS

Due to the high computational demands of QMC,
our simulations are restricted to systems of at most 128
atoms. Many techniques have been developed in order to
obtain useful results with finite systems. In this work we
use TABC (the generalization of Brillouin zone integra-
tion to many-body quantum systems in periodic bound-
ary conditions) to eliminate shell effects in the kinetic en-
ergy of metallic systems. Twisted boundary conditions
when an electron wraps around the simulation box are

Morales, Pierleoni Ceperley, PRE 2010

• Classical nuclei only.

• GGA-PBE works extremey well except at 
low density near molecular formation

• Need for better functionals to describe 
the dissociation process

• Important physical ingredient missing in 
PBE are the Van der Waals forces

• Also Nuclear Quantum effects are 
expected to be large at molecular 
dissociation
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-

aries between the gas, liquid and solid phases. The solid cir-

cles show location of critical and triple points. The dashed

lines on the left estimate when fluid hydrogen changes from

H2 to fluid H and then to a classical two component plasma

(TCP). The dotted lines on the above 10
6
bar estimate the

temperature when the electrons become degenerate: the non-

interacting fermi energy EF and 0.1 EF . Also shown are three

phases (I,II,III) of solid H2 which occur as the molecules be-

come more oriented. How precisely hydrogens change from

solid H2 to solid H is not established so it is shown as a grey

box. The line going vertically away from the grey box shows

the separation between the mostly insulating molecular fluid

and the mostly conducting atomic fluid; the first order liquid-

liquid transition ends at a critical point; what is shown at

higher temperatures is a crossover. The almost vertical tran-

sition line at the extreme right of the diagram indicates the

quantum melting of the protons lattice under compression.

tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique difficulties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational efficiency,

are significantly smaller or absent. Furthermore, rela-
tivistic effects are small, hence spin orbit effects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER

EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic
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GGA-PBE fails to reproduce the reflectivity from experiments across the metal-
insulator transition but vdW-DF2 approximation works better. 

experiments, having a slightly lower reflectivity than PBE.
As discussed above though, this is not unexpected, due to
the well-known band gap problem of local and semilocal
DFs. On the other hand, reflectivity results from configu-
rations obtained with PIMD PBE are !3 times larger than
the experimental values, even when the optical calculations
are performed with HSE DF. This effect likely derives from
the strong tendency of PBE to favor delocalized electronic
states combined with its poor treatment of dispersion
interactions, which probably results in inaccurate proton
statistical configurations, and thus the metallization and
LLPT process altogether.

It is important to mention that the above simulation data
agrees very well with the SESAME EOS [47,48], the latter
used to convert experimental shock velocity data to pres-
sure, density, and temperature. For example, our present
thermodynamic data (PIMD vdW-DF2) predicts a pressure
only slightly higher !3–5 percent than SESAME in the
relevant density range. Further, along the T ¼ 5000 K
isotherm, the agreement is better than 1% for pressures
in the range of the experiments (30–60 GPa).

Figure 3 shows a comparison of pressure versus density
along the T ¼ 1000 K isotherm for both FPMD and PIMD
simulations using either PBE DFs [21] or vdW-DF2.
Notice that both DFs show a plateau in the pressure, a
clear indication of a first-order LLPT. There is, however, a
further qualitative similarity in that the transition occurs
between an insulating molecular liquid and a conductive
atomiclike liquid. There is a large quantitative difference
in the transition pressures. The inset of Fig. 3 shows a

comparison of the PCF between FPMD and PIMD simu-
lations using vdW-DF2. As can be seen, NQEs have a
strong influence on the properties of the molecular peak,
zero-point motion producing a wider distribution of bond
distances. This results in a destabilization of the molecular
state, explaining the lower transition pressures. (Notice
that the primary vdW-DF2 results shown in the figure are
performed with PIMD, so systems of classical protons
are expected to exhibit even higher transition pressures,
above 365 GPa).
Figure 4 shows the electronic conductivity as a function

of pressure along various isotherms, comparing both PBE
and HSE DFs. Note that in both cases, proton configuration
were generated with vdW-DF2. Notice also that while the
conductivity values differ between HSE and PBE DFs, they
nonetheless agree on the existence of a jump atT ¼ 1000 K.
Returning to Fig. 1, a schematic phase diagram of hydro-

gen in the regime of molecular dissociation and below
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FIG. 4 (color online). Electronic conductivity as a function of
pressure, along various isotherms. Results calculated with both
HSE (black, lower line) and PBE (red, higher line) DFs are
shown for comparison.
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two different experiments with different initial densities (Loubeyre 2004)

Molecular stability is the 
important element, 
more than the kind of 
orbitals used for optical 
calculations.
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Liquid-Liquid Phase Transition (LLPT) 
and Nuclear Quantum Effects (NQE)

Isotherm at 
T=1000K

PBE < vdW-DF2

PIMD < BOMD

experiments, having a slightly lower reflectivity than PBE.
As discussed above though, this is not unexpected, due to
the well-known band gap problem of local and semilocal
DFs. On the other hand, reflectivity results from configu-
rations obtained with PIMD PBE are !3 times larger than
the experimental values, even when the optical calculations
are performed with HSE DF. This effect likely derives from
the strong tendency of PBE to favor delocalized electronic
states combined with its poor treatment of dispersion
interactions, which probably results in inaccurate proton
statistical configurations, and thus the metallization and
LLPT process altogether.

It is important to mention that the above simulation data
agrees very well with the SESAME EOS [47,48], the latter
used to convert experimental shock velocity data to pres-
sure, density, and temperature. For example, our present
thermodynamic data (PIMD vdW-DF2) predicts a pressure
only slightly higher !3–5 percent than SESAME in the
relevant density range. Further, along the T ¼ 5000 K
isotherm, the agreement is better than 1% for pressures
in the range of the experiments (30–60 GPa).

Figure 3 shows a comparison of pressure versus density
along the T ¼ 1000 K isotherm for both FPMD and PIMD
simulations using either PBE DFs [21] or vdW-DF2.
Notice that both DFs show a plateau in the pressure, a
clear indication of a first-order LLPT. There is, however, a
further qualitative similarity in that the transition occurs
between an insulating molecular liquid and a conductive
atomiclike liquid. There is a large quantitative difference
in the transition pressures. The inset of Fig. 3 shows a

comparison of the PCF between FPMD and PIMD simu-
lations using vdW-DF2. As can be seen, NQEs have a
strong influence on the properties of the molecular peak,
zero-point motion producing a wider distribution of bond
distances. This results in a destabilization of the molecular
state, explaining the lower transition pressures. (Notice
that the primary vdW-DF2 results shown in the figure are
performed with PIMD, so systems of classical protons
are expected to exhibit even higher transition pressures,
above 365 GPa).
Figure 4 shows the electronic conductivity as a function

of pressure along various isotherms, comparing both PBE
and HSE DFs. Note that in both cases, proton configuration
were generated with vdW-DF2. Notice also that while the
conductivity values differ between HSE and PBE DFs, they
nonetheless agree on the existence of a jump atT ¼ 1000 K.
Returning to Fig. 1, a schematic phase diagram of hydro-

gen in the regime of molecular dissociation and below
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LLPT: structure and DC conductivity
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PPT is elusive on the basis of the molecular 
fraction but is very clear on the basis of the DC 
conductivity (in the single-electron theory)

• PPT is a first order phase transition below 
Tc~1000-1500K
• Molecular dissociation is driven by metalization
• Above Tc the metalization and the molecular 
dissociation are continuous processes
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FIG. 4: The DC electronic conductivity of hydrogen as a

function of pressure calculated using the Kubo-Greenwood

formula and DFT. The black, red and blue points correspond

to averages over protonic configurations sampled from the

BOMD, CEIMC and PIMD simulations, respectively.

transition has strong effects on electronic properties, in

particular, those related to electron localization. The

molecular fraction changes slowly across the transition;

in fact, partial dissociation is seen at densities well below

the transition. The molecular state in these conditions

is very different from that found at lower densities where

there is no overlap between molecules. Close to the tran-

sition, the molecular state is transient and very weakly

bound; molecules form and break on small time scales of

the order of the collision frequency [28, 29]. While the

description of molecular and atomic fractions based on

somewhat arbitrary bonding state criteria has been used

to describe the transition region, and has lead to conl-

cude in favor of a continuous dissociation transition [31],

we believe that it is more indicative to use the discon-

tinity of the electrical conductivity: it coincides precisely

with the onset of the (dP/dV )T = 0 plateau.

Figure 4 shows the (time averaged) DC conductivi-

ties as a function of pressure for CEIMC, BOMD and

PIMD simulations. At 2000 K and above, the conductiv-

ity increases smoothly as a function of pressure, but for

T ≤ 1500 K there is a sharp and discontinuous increase

in the conductivity at the transition. The size of the dis-

continuity increases with decreasing temperature in both

BOMD and CEIMC simulations. By extrapolating to the

pressure where the size of the discontinuity in conductiv-

ity goes to zero, we can estimate the critical point of the

transition. Above this temperature, the conductivity and

the dissociation as a function of density is continuous. At

lower temperatures, a first order transition is encountered

as we go across the dissociation regime with a volume dis-

continuity and a sharp metallization of the liquid. Notice

that as mentioned before, the location of the transition is

different when computed with CEIMC and BOMD. We

expect the CEIMC results to be more accurate since they

avoid the approximate exchange-correlation functional.

Nonetheless, both methods produce the same qualitative

picture of the transition.

Melting Line

As indicated in figure 1, at low temperatures the pre-

dicted PPT is expected to meet the melting line of the

molecular solid. In this work, we determine the melting

line of the system by comparing the free energy of the liq-

uid phase and the free energy of the molecular solid phase

(phase I, hcp rotationally disordered). For computational

reasons, we limit our study to the DFT level of theory.

It is well known that the semi-local exchange-correlation

functionals in DFT underestimate the band gap in most

semiconductors and favor delocalized states. This ex-

plains why the PPT is predicted at lower pressure with

DFT than with QMC. For pressures below the metaliza-

tion, the band gap is finite and the ground state prop-

erties should be accurately reproduced. As soon as the

DFT- band gap closes, the nature of the ground state in

this theory changes significantly and the predictions from

DFT become inaccurate. This discrepancy will continue

until the true band gap of the system closes. At higher

densities, DFT will again produce reliable results. This

is consistent with our finding here and in previous work

[39] and limits the range of pressure for which DFT can

be used to predict the melting line (see figure 1).

Using thermodynamic integration with BOMD[45], we

performed free energy calculations in the solid and liquid

phases to determine the melting line at high pressures.

We neglected quantum effects on the nuclei for these cal-

culations. The melting line of hydrogen should be well

represented by our calculations with classical protons for

pressures below 200 GPa, since the system remains in-

sulating. Unfortunately, we were unable to study the

influence of nuclear quantum effects on the melting line

due to the large computational demands of the PIMD
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QMC benchmark of DFT approximations

RAYMOND C. CLAY, III et al. PHYSICAL REVIEW B 89, 184106 (2014)

FIG. 1. (Color online) (Top) 〈|δeD̃F(P )|〉global versus functional
for solid molecular test sets. Data for P = 200 and 300 GPa are
shown in the legend. (Bottom) 〈|δeD̃F(P )|〉global versus functional for
the liquid test sets. Data for rs = 1.30, 1.45, and 1.60 shown.

various ways (relative to dissociated hydrogen atoms, relative
to an arbitrary configuration, etc.), but we have preferred to
use the methods described in the following.

1. Global energetics

To establish which functional has the best global energetic
properties, we looked at the mean-absolute errors in the energy
per proton. For a particular DFT pressure P DF, we build a
test set S ′ by including all the configurations consistent with
that pressure, including ones with different structures. Then,
for each pressure and density functional independently, we
choose a reference point cDF(P DF) by minimizing 〈|δ̃eDF|〉S ′ .
In practice, this amounts to choosing the median of δeDF on
this aggregated test set S ′.

Using this choice for cDF(P DF), we calculated 〈|δ̃eDF|〉S
over each structure and averaged this over all structures to
obtain what we denote 〈|δeD̃F(P DF)|〉global.

In the top of Fig. 1, we plot 〈|δeD̃F(P )|〉global versus
functional for solid molecular hydrogen. We included results
for both the P = 200 and the 300 GPa structures, which are
marked with striped and dotted bars, respectively. Two things
immediately stand out. The first is that nearly all of the hybrid

FIG. 2. (Color online) 〈|δeD̃F(P )|〉local versus functional for solid
molecular test sets. Data for P = 200 and 300 GPa are shown in the
legend.

and improved van der Waals functionals, excluding vdW-TS,
noticeably outperform the LDA and PBE functionals. Second,
the vdW-DF functional seems to have the best global energetic
performance out of all functionals considered, followed by
BLYP and HSE.

In the bottom of Fig. 1, we show a plot of 〈|δeD̃F(ρ)|〉global
for the liquid configurations. We have included data for the
three densities rs = 1.30, 1.45, 1.60, which are identified in
the legend. Notice that as in the solids, vdW-DF is the best
performing functional, although the hybrid functional HSE is
a close runnerup.

Despite the vast differences in structures and densities,
we see a very consistent picture regarding how accurate
various functionals are in capturing global energetics. For the
solid test set, we find that PBE is accurate to approximately
0.3 mHa/proton in dense hydrogen, whereas vdW-DF and
HSE are good to 0.19 mHa/proton and 0.24 mHa/proton,
respectively. The errors are smaller in the liquid phase, but the
ordering of these functionals is the same for both cases with
vdW-DF noticeably more accurate.

2. Local energetics

To measure the local energetics, we again used a shifted
mean absolute error for the energy per proton, but with the
reference point chosen to be specific to a given structure. For
a test set S corresponding to a particular structure at pressure
P , we again let the energy shift cDF be chosen to minimize
〈|δeD̃F(P )|〉S on the same set S. Averaging 〈|δeD̃F(P )|〉S over
all structures gives us a pressure-dependent measure of the
local energetic errors, which we will denote 〈|δeD̃F(P )|〉local.
Notice that in this case, we are only concerned with relative
errors between close configurations in the potential energy
surface; systematic shifts between the various structures are
not considered.

In Fig. 2, we show 〈|δeD̃F(P )|〉local versus density functional
for solid molecular hydrogen. The results for P = 200 and
300 GPa are shown on the plot with dashed and dotted
bars, respectively. The vdW-DF functional was the most
accurate in capturing relative energy differences between

184106-4

• sets of 100 DFT-generated (VdW-DF2) 
configurations for 54 quantum protons at 
1000K. 

• three densities across the dissociation-
metallization region

Clay et al, Phys. Rev B 89, 184106 (2014).
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BENCHMARKING EXCHANGE-CORRELATION FUNCTIONALS . . . PHYSICAL REVIEW B 89, 184106 (2014)

similar configurations with BLYP a close second. After these
functionals, the optPBE and HSE functionals exhibited fair
performance. The worst performing DF was LDA, followed
by vdW-TS, and then jointly by vdW-DF2 and PBE. This
same trend was observed for the global energetic performance
in Fig. 1.

It is interesting to note how the magnitudes of the global
energetic and local energetic errors compare. LDA and vdW-
DF2 have local errors that are approximately 70% the size of
their global errors, and thus experience only modest accuracy
gains when considering energy differences between closely
related structures. HSE and PBE perform moderately better,
having local errors that are approximately 50% and and
60% of their global errors. Lastly, the vdW-DF functional,
beyond having the lowest magnitude of global energetic errors,
experiences a local energy error that is approximately 25% of
the global errors.

In summary, we find that the van der Waals functionals
were most able to calculate relative energy differences around
local minima, with vdW-DF and BLYP having the smallest
local energetic errors. This might have been guessed from the
previous section, as these same functionals were, on average,
the best for capturing large-scale energy differences. Thus, for
structural relaxation, zero-point energy calculations, QMD,
and other applications where location and shape of the local
minimum are important, the vdW-DF functional is strongly
recommended.

3. Pressures

For a test set S corresponding to a structure at particular
density, we averaged 〈δP DF〉S over all structures at the same
pressure or density to estimate the error in the pressure. The top
of Fig. 3 shows 〈δP DF〉 for the solids. We see that in contrast
to the local and global energetics sections, the semilocal
functionals have some of the lowest pressure errors. HSE is the
best performing functional in this regard. Note that the van der
Waals functionals are among the worst performing functionals
for the average pressures, with vdW-DF coming in just behind
vdW-DF2 for highest pressure errors. These observations are
also seen in the bottom of Fig. 3, which shows 〈P DF〉 for the
liquid configurations.

We also looked at 〈|δP̃ DF|〉local for the solids and
〈|δP̃ DF|〉global for the liquids, defined as was done with the
energy errors in the local and global energetic sections. We find
that the magnitude of 〈|δP̃ DF|〉local across all configurations and
densities is statistically indistinguishable from the error bars
of our QMC pressure estimates, indicating that the errors in
the pressure are roughly independent of the configurations.
Thus, the pressure errors observed were mostly functional and
density-dependent constant offsets from P QMC. Such was not
the case for the energy.

To conclude, when it comes to capturing global and local
energy differences at a fixed density, including exact exchange
or van der Waals effects will generally improve the energetics
of density functionals for dense hydrogen. The vdW-DF
functional in particular gives noticeable improvements over
PBE in capturing global energetics, and does exceptionally
well for capturing local energetics. In spite of this, HSE and the
semilocal functionals outperform nearly all the van der Waals

FIG. 3. (Color online) (Top) 〈δP DF〉 versus DFT functional for
the molecular solids. (Bottom) 〈δP DF〉 versus DFT functional for the
liquid configurations.

functionals when it comes to correctly estimating pressures.
Given how systematic the pressure errors are, one can correct
the pressure of energetically favorable DFs such as vdW-DF
by estimating an overall correction from either LDA or QMC.
Fortunately, these errors are far more consistent than the energy
errors, and so there should be some way of improving upon
these functionals for future hydrogen applications.

B. Effects of functional choice

In this section, we see how the energetic considerations of
the benchmarking section relate to current problems of interest
in the phase diagram of high-pressure hydrogen. Specifically,
we look at how accurately different functionals predict H2
bond lengths relative to QMC optimized structures. We also
look at QMC cold curves for ground-state structures optimized
with different functionals, and at the relation between the
location of the LLPT and the mean absolute error of a selection
of DFT functionals.

1. Bond lengths

The magnitude and pressure dependence of the bond length
of the hydrogen molecule in the solid depends significantly on

184106-5
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• energy dispersion is the smallest with vdW-
DF functional

• pressure absolute difference is larger with 
vdW-DFʼs functionals
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T=600K: pressure relaxation of the systems with P=8
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T=600K: proton-proton correlation functions

classical

quantum P=8
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Quality of the wf across LLPT (T=900K, rs=1.34, classical)
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Finite size effects 

• Runs with Np=128 for few test cases

• Single-body and two-body corrections from the small-k behaviour of 
Sqq(k) (Chiesa et al, Drummond et al.)
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• NQE decreases the transition pressure by ~ 80GPa at T=600K (CEIMC)

• PIMD with DFT-PBE predicts dissociation and melting of phase I not in 
agreement with experiments 

• optical properties (reflectivity) are also much larger (100%) than in 
experiments

• Partially compensating effects: 
• PBE favor dissociation  
• the use of classical nuclei un-favor dissociation resulting in a reasonable 

agreement with experiments

• PBE+quantum nuclei (PI) must be avoided near molecular dissociation !

• vdW-DF2 predicts a much stronger molecular character.
• vdW-DF2 predicts a much larger dissociation pressure (ΔP≳150GPa)
• vdW-DF2 appears to somehow overbind molecules (vs CEIMC)
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LLPT and melting: details
• CEIMC:  (BOPIMC)

• 54 protons with 64 twists (4x4x4)
• Slater-Jastrow wfs with DFT orbitals + BF 
• VMC with RQMC corrections (small ~5Gpa, yet to be included)
• Size corrections on the transition line are also small (~10Gpa, to be included)
• PIMC with 8 slices at 600K (smart MC normal-mode sampling)

• BOMD: (VASP & QuantumESPRESSO)
• PBE xc functional with a Troullier-Martins non-loc pseudopot. (rc=0.5a.u.)
• PAW with VASP (HSE)
• energy cutoff of 90 Ry
• 432 protons at the Γ point for PPT (strong size effects in DFT!!!)
• 432 protons in the liquid and 360 protons in the solid for the melting line 
calculation

• PIMD: imaginary time step τ=(8000 K)-1 providing a 8 slice paths at T=1000K

Melting line determination via calculation of solid and liquid free energies. (classical 
nuclei with PBE)

Morales, Pierleoni, Schwegler, Ceperley PNAS 108, 12799 (2010)
Morales, McMahon, Pierleoni, Ceperley PRL 110, 065702 (2013)
Pierleoni, Morales, Holzmann, Ceperley, to be published (2014)
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Hydrogen is the simplest element in nature and never-
theless its phase diagram at high pressures (Ps) remains a
challenge both from the experimental and theoretical

points of view. Moreover, the understanding of equilibrium
properties of hydrogen in the high pressure regime is crucial for a
satisfactory description of many astrophysical bodies1 and for
discovering new phases in condensed matter systems. At normal
pressures and temperatures (Ts), the hydrogen molecule H2 is
exceptionally stable and thus the usual phases are described in
terms of these molecules, that is, solid, liquid and gas molecular
phases (see Fig. 1).

In the early days, it was conjectured by Wigner and
Huntington2 that, upon high pressure, this stable entity—the
H2 molecule—can be destabilized, giving rise to an electronic
system composed of one electron for each localized atomic center,
namely, the condition that, according to the band theory, should
lead to metallic behaviour. After this conjecture, an extensive
experimental and theoretical effort has been devoted, an effort
that continues to be particularly active also recently3–8, where
some evidence of metallicity in hydrogen has been reported.
While a small resistivity has been observed in the molecular liquid
state in the range of 140–180GPa and 2,000–3,000K (ref. 4), it is
not clear whether this observation is above a critical temperature
T*, where only a smooth metal–insulator crossover can occur,
and whether metallization is due to dissociation or can occur even
within the molecular phase. Evidence of a phase transition has
been clearly reported in ref. 7, though the temperature has not
been measured directly. Moreover indirect evidence of a phase
transition at around 120GPa and 1,500K has been claimed. By
contrast, any indication of metallization has not been observed in
the low-temperature solid phase yet9–11.

Until very recently, the density functional theory (DFT)
method has been considered as the standard tool for the
simulation of electronic phases, because it allows the simulation
of many electrons with a reasonable computational effort.
However, there are several drawbacks in this technique especially
for the study of the dissociation of hydrogen: (i) the single

molecule is not accurately described at equilibrium and especially
in the dissociation limit12,13 (see Fig. 2c). (ii) Electronic gaps are
substantially underestimated14 within DFT, implying that
possible molecular phases are more easily destabilized within
standard density functionals (DFs). For all the above reasons,
DFT seems not adequate for the hydrogen problem under high
pressure, especially in a range of pressures unaccessible by
experiments, where the quality of a particular DF cannot be
validated. Indeed, several DFT simulations on this particular
subject15–18 lead to contradictory results for the nature of the
molecular liquid–atomic liquid transition, and its position in the
phase diagram may vary in a range of more than 100GPa
according to different DFs19–21. Recently, it has also been shown
that DFT solid stable phases strongly depend on the DF used22–
24, suggesting quite clearly that the predictive power of DFT is
limited for hydrogen.

Among all first principle simulation methods, the quantum
Monte Carlo (QMC) method provides a good balance between
accuracy and computational cost and it appears very suitable for
this problem. The QMC approach is based on a many-body
wavefunction—the so called trial wavefunction—and no
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Figure 1 | P-T phase diagram of hydrogen. Black solid lines indicate
experimental boundaries between the molecular liquid and the molecular
solid, the latter consisting of four different solid phases denoted by I, II, III
and IV as in ref. 11. Coloured symbols with dashed curves correspond to the
liquid–liquid transition (LLT) obtained with latest simulations. Red circles
and green squares refer to density functional theory (DFT) calculations with
different functionals (PBE and vdW)20, while orange triangles refer to
coupled electron-ion Monte Carlo (CEIMC)19,34. Blue diamonds correspond
to the LLT estimated in this work. Our simulations also find that
solidification occurs starting from a molecular liquid at a parameter
indicated by a blue star. The black dashed line is a guide to the eye.
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Figure 2 | Accuracy and finite size effects. (a) Pressure as a function
of the system sizes N¼ 64, 128 and 256 at a density rs¼ 1.22 (the
Wigner-Seitz radius rs is defined as V/N¼4/3p(rsa0)3 where V is the
volume, N the number of ions and a0 is the Bohr radius.) near the transition
at 600K. The diffusion Monte Carlo (DMC) value, obtained from 20
equilibrated (N¼ 256) configurations generated by the variational Monte
Carlo (VMC) dynamics, is also plotted (red square). (b) Finite size scaling
of the condensation energy gain at rs¼ 1.28 and 600K. The condensation
energy gain becomes negligible in the infinite size limit (see Methods).
(c) Dissociation energy curves for the H2 molecule for different methods,
QMC at the VMC level and with the same variational wavefunction
employed in the dynamics, DFTwith PBE or HSE DFs14, and the exact curve
obtained with full configuration interaction (CI) method35.
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Comparision with QMC-MD method
Mazzola, Yonuki, Sorella, Nature Comm (2013)

energy comparison on single confs for Np=54 at the Γ point

rs Evmc Erqmc J=2s, det=2s J=2s. 
det=6s5p1d Δ character

1,24 -0.52564(2) -0.52638(3) -0,5143 -0,5230 16 mH/at atomic

1,44 -0.55605(2) -0.5572(1) -0,5412 -0,5542 15mH/at molec.

quality of the wave function 
is an obvious reasons for 
the discrepancy but we need 
a deeper investigation.
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Conclusions
• BOMD based on GGA-PBE is accurate in a large region of the phase space

• GGA-PBE breaks down near metallization and molecular dissociation in 
hydrogen.

• Nuclear quantum effects are large at the molecular dissociation and for 
T<1000K and must be considered properly in a quantitative theory.

• This requires to use different approximation in DFT.

• Which functional suits best is still an open question and useful benckmark can 
be obtained by QMC.

• Hydrogen metallization and dissociation in the liquid phase occurs through a 
weakly first order phase transition.

• The precise location of the transition line and of the critical point depend on 
the level of theory, the CEIMC’s ones being intermediate between PBE and 
vdW-DF2.

• We are waiting for experimental validations.

• Major problem to be investigated: disagreement with QMC-MD
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Perspectives

• Hydrogen metallization at lower temperature is still elusive mainly because 
of the missing information on the crystalline structure of the molecular 
system.

•NQE are crucial at such low temperature as shown by CEIMC.

•CEIMC can provide useful information in this region and benchmark DFT 
approximations at finite nuclear temperature. 

•Apply CEIMC in studying the stability of the “many” candidates crystalline 
structures for phase III and phase IV  (in progress)

•Melting of phase I and phase IV (in progress)
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