An overview of vibrations in solids

Bartomeu Monserrat

QMC in the Apuan Alps IX 27 July 2014

Why vibrations in a QMC conference?

- If the required accuracy makes QMC necessary, then vibrations could also be important.
- QMC band gaps are static, the effects of electron-phonon coupling may be important.

Outline

The vibrational energy in solids Theoretical background Applications

Vibrational coupling in solids Theoretical background Applications

Conclusions

Outline

The vibrational energy in solids Theoretical background Applications

Vibrational coupling in solids Theoretical background Applications

Conclusions

Why is the vibrational problem difficult?

$$\hat{H}_{\rm vib} = -\frac{1}{2} \sum_{\mathbf{R}_{p,\alpha}} \frac{1}{m_{\alpha}} \nabla_{p\alpha}^2 + V(\mathbf{r}_{\alpha})$$

Why is the vibrational problem difficult?

$$\hat{H}_{\rm vib} = -\frac{1}{2} \sum_{\mathbf{R}_p, \alpha} \frac{1}{m_\alpha} \nabla_{p\alpha}^2 + V(\mathbf{r}_\alpha)$$

▶ 3*N*-dimensional function

Why is the vibrational problem difficult?

$$\hat{H}_{\rm vib} = -\frac{1}{2}\sum_{\mathbf{R}_p,\alpha}\frac{1}{m_\alpha}\nabla_{p\alpha}^2 + V(\mathbf{r}_\alpha)$$

- ▶ 3*N*-dimensional function
- Each data point requires an electronic energy calculation

Harmonic approximation

• Vibrational Hamiltonian in $\{\mathbf{r}_{\alpha}\}$ (or $\{\mathbf{u}_{\alpha}\}$):

$$\hat{H}_{\text{vib}}^{\text{har}} = -\frac{1}{2} \sum_{\mathbf{R}_p,\alpha} \frac{1}{m_\alpha} \nabla_{p\alpha}^2 + \frac{1}{2} \sum_{\mathbf{R}_p,\alpha;\mathbf{R}_{p'},\beta} \mathbf{u}_{p\alpha} \mathbf{\Phi}_{p\alpha;p'\beta} \mathbf{u}_{p'\beta}$$

- ▶ Normal mode analysis: $\{\mathbf{u}_{p\alpha}\} \longrightarrow \{q_{\mathbf{k}s}\}$
- Vibrational Hamiltonian in {q_{ks}}:

$$\hat{H}_{\rm vib}^{\rm har} = \sum_{\mathbf{k},s} \left(-\frac{1}{2} \frac{\partial^2}{\partial q_{\mathbf{k}s}^2} + \frac{1}{2} \omega_{\mathbf{k}s}^2 q_{\mathbf{k}s}^2 \right)$$

Principal axes approximation to the BO energy surface

$$V(\mathbf{q}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s},q_{\mathbf{k}'s'}) + \cdots$$

Static lattice DFT total energy.

- DFT total energy along frozen independent mode.
- DFT total energy along frozen coupled modes.

Features:

- Can be improved systematically.
- ▶ Subspace with higher *N*-body terms (e.g. perovskites).
- Estimate of error in anharmonic energy.

Independent term (I)

B. Monserrat – QMC Apuan Alps IX – July 2014

Independent term (II)

B. Monserrat – QMC Apuan Alps IX – July 2014

$$V(\mathbf{q}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s}, q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat - QMC Apuan Alps IX - July 2014

$$V(\mathbf{q}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s}, q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat - QMC Apuan Alps IX - July 2014

$$V(\mathbf{q}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s}, q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat - QMC Apuan Alps IX - July 2014

$$V(\mathbf{q}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s}, q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat - QMC Apuan Alps IX - July 2014

$$V(\mathbf{q}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s}, q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat – QMC Apuan Alps IX – July 2014

Vibrational self-consistent field equations

Vibrational Schrödinger equation:

$$\left(\sum_{\mathbf{k},s} -\frac{1}{2}\frac{\partial^2}{\partial q_{\mathbf{k}s}^2} + V(\mathbf{q})\right)\Phi(\mathbf{q}) = E\Phi(\mathbf{q})$$

• Ansatz:
$$\Phi(\mathbf{q}) = \prod_{\mathbf{k},s} \phi_{\mathbf{k}s}(q_{\mathbf{k}s})$$

Self-consistent equations:

$$\left(-\frac{1}{2} \frac{\partial^2}{\partial q_{\mathbf{k}s}^2} + \overline{V}_{\mathbf{k}s}(q_{\mathbf{k}s}) \right) \phi_{\mathbf{k}s}(q_{\mathbf{k}s}) = \lambda_{\mathbf{k}s} \phi_{\mathbf{k}s}(q_{\mathbf{k}s})$$
$$\overline{V}_{\mathbf{k}s}(q_{\mathbf{k}s}) = \left\langle \prod_{\mathbf{k}',s'} \phi_{\mathbf{k}'s'}(q_{\mathbf{k}'s'}) \right| V(\{q_{\mathbf{k}''s''}\}) \left| \prod_{\mathbf{k}',s'} \phi_{\mathbf{k}'s'}(q_{\mathbf{k}'s'}) \right\rangle$$

Second order perturbation theory

- Second order perturbation theory (similar to MP2).
- Measures the accuracy of the mean-field approach.
- So far small MP2 corrections.
- Can use other methods: whole electronic structure hierarchy.

Anharmonic free energy

Anharmonic vibrational excited states:

$$|\Phi^{\mathbf{S}}(\mathbf{q})\rangle = \prod_{\mathbf{k},s} |\phi_{\mathbf{k}s}^{S_{\mathbf{k}s}}(q_{\mathbf{k}s})\rangle$$

where S is a vector with elements S_{ks} .

Anharmonic free energy:

$$\mathcal{F}_{anh} = -\frac{1}{\beta} \ln \sum_{\mathbf{S}} e^{-\beta E_{\mathbf{S}}}$$

Single calculation for insulators.

Outline

The vibrational energy in solids Theoretical background Applications

Vibrational coupling in solids Theoretical background Applications

Conclusions

Solid hydrogen

- Most abundant element in the Universe.
- Hydrogen at high pressure in planetary interiors and stars.
- Possibility of exotic phases: high-temperature superconductivity, zero-temperature quantum fluid,

The phase diagram of high pressure hydrogen

- → Goncharov et al., Phys. Rev. Lett. 80, 101 (1998)
- → Datchi et al., Phys. Rev. B 61, 6535 (2000)
- → Gregoryanz et al., Phys. Rev. Lett. 90, 175701 (2003)
- → Deemyad and Silvera, Phys. Rev. Lett. 100, 155701 (2008)
- → Howie et al., Phys. Rev. Lett. 108, 125501 (2012)

B. Monserrat - QMC Apuan Alps IX - July 2014

The determination of phase IV

→ Pickard, Martinez-Canales, and Needs, Phys. Rev. B 85, 214114 (2012)
→ Pickard, Martinez-Canales, and Needs, Phys. Rev. B 86, 059902 (2012)

B. Monserrat - QMC Apuan Alps IX - July 2014

Anharmonic vibrations in solid molecular hydrogen

The phase diagram of solid molecular hydrogen

Lloyd-Williams, Monserrat, López Ríos, Drummond, and Needs See talk on Tuesday at 12:00am:

DFT and QMC calculations of solid molecular hydrogen

Why are snowflakes hexagonal?

Pictures by Kenneth G. Libbrecht (SnowCrystals.com)

B. Monserrat - QMC Apuan Alps IX - July 2014

Why are snowflakes hexagonal?

Pictures by Kenneth G. Libbrecht (SnowCrystals.com)

B. Monserrat - QMC Apuan Alps IX - July 2014

The relative stability of hexagonal and cubic ice

Engel, Monserrat, and Needs See talk on Wednesday at 12:00am:

Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice

Outline

The vibrational energy in solids Theoretical background Applications

Vibrational coupling in solids Theoretical background

Applications

Conclusions

 $\langle \mathcal{A} \rangle = \langle \Phi(\mathbf{q}) | \mathcal{A}(\mathbf{q}) | \Phi(\mathbf{q}) \rangle$

 $\langle \mathcal{A} \rangle = \langle \Phi(\mathbf{q}) | \mathcal{A}(\mathbf{q}) | \Phi(\mathbf{q}) \rangle$

Vibrational wave function: harmonic or anharmonic

 $\langle \mathcal{A} \rangle = \langle \Phi(\mathbf{q}) | \mathcal{A}(\mathbf{q}) | \Phi(\mathbf{q}) \rangle$

- Vibrational wave function: harmonic or anharmonic
- Observable coupling:
 - Expansion:

$$\mathcal{A}(\mathbf{q}) = \sum_{n,\mathbf{k}} a_{n\mathbf{k}}^{(1)} q_{n\mathbf{k}} + \sum_{n,\mathbf{k}} \sum_{n',\mathbf{k'}} a_{n\mathbf{k};n'\mathbf{k'}}^{(2)} q_{n\mathbf{k}} q_{n'\mathbf{k'}} + \cdots$$
$$\mathcal{A}(\mathbf{q}) = \sum_{n,\mathbf{k}} a_{n\mathbf{k}} q_{n\mathbf{k}}^2$$

Monte Carlo sampling

 $\langle \mathcal{A} \rangle = \langle \Phi(\mathbf{q}) | \mathcal{A}(\mathbf{q}) | \Phi(\mathbf{q}) \rangle$

- Vibrational wave function: harmonic or anharmonic
- Observable coupling:
 - Expansion:

$$\mathcal{A}(\mathbf{q}) = \sum_{n,\mathbf{k}} a_{n\mathbf{k}}^{(1)} q_{n\mathbf{k}} + \sum_{n,\mathbf{k}} \sum_{n',\mathbf{k}'} a_{n\mathbf{k};n'\mathbf{k}'}^{(2)} q_{n\mathbf{k}} q_{n'\mathbf{k}'} + \cdots$$
$$\mathcal{A}(\mathbf{q}) = \sum_{n,\mathbf{k}} a_{n\mathbf{k}} q_{n\mathbf{k}}^2$$

Monte Carlo sampling

Examples: electronic band gaps, chemical shielding tensor

Vibrational phase space sampling

$$\langle \mathcal{A} \rangle = \langle \Phi(\mathbf{q}) | \mathcal{A}(\mathbf{q}) | \Phi(\mathbf{q}) \rangle$$

MD/PIMD

Random

Quadratic

Outline

The vibrational energy in solids Theoretical background Applications

Vibrational coupling in solids Theoretical background Applications

Conclusions

Electron-phonon coupling in condensed matter

Coupling to form Cooper pairs in standard superconductivity

Electron-phonon coupling in condensed matter

- Coupling to form Cooper pairs in standard superconductivity
- Temperature dependence of band gaps in semiconductors

→ Clark, Dean, and Harris, Proc. R. Soc. Lond. A 277, 312 (1964)

B. Monserrat - QMC Apuan Alps IX - July 2014

- ZP band gap corrections:
 - ▶ Silicon: −53 meV
 - ▶ Diamond: about −370 meV
- \mapsto Clark, Dean, and Harris, Proc. R. Soc. Lond. A 277, 312 (1964)
- \mapsto Cardona, Solid State Comm. 133, 3 (2005)

Diamond band structure

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

Diamond phonon dispersion

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

Diamond electron-phonon coupling

 \mapsto Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

B. Monserrat - QMC Apuan Alps IX - July 2014

Silicon band structure

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

Silicon phonon dispersion

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

Silicon electron-phonon coupling

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

B. Monserrat - QMC Apuan Alps IX - July 2014

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

→ Monserrat and Needs, Phys. Rev. B 89, 214304 (2014)

Magnetic field

Magnetic field

Magnetic field

$$\begin{array}{lll} \mathbf{B} &=& \mathbf{B}_{\mathrm{ext}} - \mathbf{B}_{\mathrm{ind}} = (\mathbf{1} - \boldsymbol{\sigma}) \mathbf{B}_{\mathrm{ext}} \\ \mathbf{B}_{\mathrm{ind}} &=& \boldsymbol{\sigma} \mathbf{B}_{\mathrm{ext}} \\ \mathbf{B}_{\mathrm{ind}}(\mathbf{r}) &=& \frac{1}{c} \int \mathrm{d}^3 \mathbf{r}' \mathbf{j}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \end{array}$$

L-alanine molecular crystal

- Orthorhombic space group $P2_12_12_1$ (4 molecules).
- ► L-alanine (C₃H₇NO₂) has 52 atoms in the primitive cell.

Isotropic shift

B. Monserrat - QMC Apuan Alps IX - July 2014

Shielding anisotropy

B. Monserrat - QMC Apuan Alps IX - July 2014

Temperature dependence

Anharmonic vibrations

Anharmonic coupling to the shielding tensor

Summary

Anharmonic energy:

- Vibrational self-consistent field method for solids.
- > Phase diagram of high-pressure solid molecular hydrogen.
- Relative stability of hexagonal and cubic ice.
- Vibrational coupling:
 - Quandratic expansion and Monte Carlo.
 - Electron-phonon coupling in semiconductors.
 - Vibrational effects on the chemical shielding tensor.

Outlook

Anharmonic vibrations can be important:

- Small enthalpy differences between competing phases.
- Harmonic instabilities.
- High temperatures.
- <u>►</u>

Vibrational coupling can be important:

- Zero-point correction and finite temperature.
- Any quantity available at the static level can be coupled to vibrations.
- Electronic band gaps, NMR, ...

Acknowledgements

Richard Needs

Jonathan Lloyd-Williams

Neil Drummond

Edgar Engel

Chris Pickard

Pablo López Ríos

Funding

Engineering and Physical Sciences Research Council

References

Anharmonic vibrations formalism

B. Monserrat, N.D. Drummond, R.J. Needs Physical Review B **87**, 144302 (2013)

Metallization of helium

B. Monserrat, N.D. Drummond, C.J. Pickard, R.J. Needs Physical Review Letters **112**, 055504 (2014)

Dissociation of hydrogen

S. Azadi, B. Monserrat, W.M.C. Foulkes, R.J. Needs Physical Review Letters **112**, 165501 (2014)

Electron-phonon coupling

B. Monserrat, R.J. Needs Physical Review B **89**, 214304 (2014)