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FCIQMC

Full Configuration Interaction Quantum Monte Carlo
(FCIQMC) (Booth, Thom, Alavi 2009) is a relatively
recent projector QMC method working in the space of
Slater Determinants.

Can treat Hilbert spaces orders of magnitude larger than
exact diagonalisation.

Relatively straightforward to parallelise.

It scales to 1000s of cores so we can use big computers.
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Big Computers
Archer: 2014, cray XC30, 76000 cores, 1.5 petaflops,
£43, 000, 000
www.archer.ac.uk



Big Computers
Fionn: 2014, 7600, 147 teraflops, AC 3.7, 000, 000
www.ichec.ie



Can we use them?

There is an upper limit to how many parallel processes you
can use (Amdahl’s law) before the efficiency drops
significantly.

QMC can often make use of much larger machines
compared with DFT or exact diagonalisation.

Two of the biggest barriers to improved scaling are load
imbalances and communication overhead.

The use of non-blocking communications and improved
load balancing was successful for CASINO (Gillan, Towler,
Alfe) so can we use similar ideas here?
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Parallel Strategies



Parallel Implementation (Booth, Smart, Alavi 2014)

Distribute list of occupied determinants across all
processors.



Parallel Implementation

Each processor evolves main list and spawn into spawned
walker list.
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Hashing

At any point in time we need to know on which processor a
given determinant should reside for annihilation to take
place.

Storing a list is not practical.

Distributing according to integer label not likely to succeed.

Use a hash function to randomise procedure somewhat.

Assign determinant to processor as p = hash(|Di〉)modNp,
hash(x) = a, a ∈ [0, Nmax).
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Hashing (contd.)

Hashing should result in an even distribution of walkers.

In practice as the number of processors increases load
imbalances become more of an issue.

Can isolate troublesome determinants
(Booth, Smart, Alavi 2014).

Can we do better?
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Load Balancing

Difficult problem, especially when Ndets very large.

Perfect load balancing would require storage of mapping on
every processor.

Instead look for simple approach which should be good
enough.

Idea: split hash range into M bins and redistribute these
bins.
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Load Balancing

Procedure:

1. Find processors with populations either above (P d
i ) or

below (P r
i ) the ideal average walker population (Nav ± δ).

2. Sort list of donor bins in increasing order of bin size.

3. Redistribute donor bins to receiver processors while
Nw(P d

i ) ≥ Nav − δ and Nw(P r
i ) ≤ Nav + δ.



Picture

Define array pmap[i] = (0, 1, . . . , Np, 0, . . . , Np, . . . ). So,
P (|Di〉) = pmap[hash(|Di〉)mod(Np ×M)]



Picture

Just modify entries in pmap so processors are mapped to
new processor in the future.

For M = 1 get usual procedure, for M → NDets get
‘perfect’ load balancing.

Trade off between overhead and improving load balancing.
M ∼ 20− 100 is usually good enough.

Only need to distribute infrequently after equilibration.
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Non-Blocking Communications

Another barrier to optimal scaling is the communication
overhead which gets worse as the processor count increases.

Non-blocking communications can potentially mitigate
these effects by overlapping computation with
communication.

How can this be achieved in FCIQMC when psips need to
annihilate?

Solution: They don’t need to annihilate every step once
they annihilate at the same point in time (continuous time
extension: Spencer, Foulkes).
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Non-Blocking algorithm

Evolve main list to τ + ∆τ (receiving spawned walkers in
background)

Complete receive

Evolve walkers spawned onto current processor to τ + ∆τ

Non-blocking send of walkers to their new processors.

Annihilate walkers on current processor



Picture

Spawned list

Main list

Received list

Processor P

Annihilation

TimeNewly spawned walkers

Communication



Test Case

18-site Hubbard model in momentum space basis.

86 million psips occupying 61.2 million determinants

Run for 20000 iterations



Preliminary results: Load Balancing
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Preliminary results: Load Balancing + Non-Blocking
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Conclusions

Simple load balancing can improve the parallel
performance of FCIQMC-like codes.

Non-blocking communications should improve scaling when
running on more processors.

Next step run on larger computers - 1000s of cores.
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