TTI14@Valico Sotto, Italy, 28.Jul.14

Embedded Atom into Jellium Sphere

Ryo Maezono

rmaezono@mac.com

School of Information Science,

Japan Advanced Institute of Science and Technology, Ishikawa, Japan.

Collaborators

Since 2005

- Prof. Yasutami Takada (Tokyo University)
- Cyrus. J. Umrigar (Cornell University)
 - Dr. M. Shimomoto (ex. Takada group)
 - Dr. K. Yoshizawa (ex. Takada group)

Embedded Atom Model

(X Curves taken from M. Shimomoto's thesis)

- Fundamental modeling of electrons in solids Screening, Solvent effect, Kondo coupling, etc.
- Inhomogeneous effects on DFT-XC

HEG-based XC \rightarrow Embedded lons in HEG

• Effective Medium Theory for random systems

M.J. Puska et.al., PRB24, 3037 (1981).

Present Study

Concentrating on Z=1

Z≤2 ; running well, some results are shown in this talk Z≥3 ; troubles in QMC samplings

Comments of other Z

Spin polarization stable? for $Z \ge 5$. and at Z=7, the behavior is weird.

- V.U. Nazarov, C.S. Kim, and Y. Takada, Phys. Rev. B 72, 233205 (2005).

Kondo Ferro?; 'LessThanHalf' gives $J \rightarrow \infty$ by the renormalization. Z=7 corresponds to 1s(2)/2s(2)/2p(3), namely the half-filling.

Physics for Z=1

- Kondo resonance exist? $\varepsilon_F(r_s^{c;U}) \sim A(Hydrogen) = -0.0278$ ha.

- Which region of rs?
- $\varepsilon_F(r_s^{c;L}) \sim I(Hydrogen) = +0.499$ ha.
- Transition is sharp or cross-over?

DFT used for Metallic Hyd. is justified?

Isolated H⁻

Difficult to describe itself...

HF cannot... H. Hotop, W.C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975) H.B. Shore, J.H. Rose, E. Zaremba, Phys. Rev. B 15, 2858 (1977)

LDA treatment as a 'proton@jellium'

Z.D. Popovic and M.J. Scott, PRL 33, 1164 (1974).C.O. Almbaldh, U. von Barth, Z.D. Popovic, and M.J. Stott, PRB14, 2250, (1976).

Interpretation of Affinity in DFT

D. Lee,* F. Furche, and K. Burke, J. Phys. Chem. Lett. 1, 2124 (2010).J.M. Galbraith, H.F. Schaefer, J. Chem. Phys. 105, 862 (1996).N. Rosch, S.B. Trickey, J. Chem. Phys. 106, 8940 (1997).

LDA studies

- J-H. Song, PhD thesis, Oregon State Univ. (2004).
- M. Shimomoto , K. Yoshizawa, Y. Takada (since 2006).
- A.I. Duff and J.F. Annett, Phys. Rev. B 76, 115113 (2007).

Phase shift in asymptotic behavior of KS orb.

$$\phi_l(r) = kr \cdot j_l(kr) \rightarrow \frac{1}{kr} \exp\left[kr + \delta_l(k) - \frac{l\pi}{2}\right]$$

LDA studies

Historically...

- Almbladh, von Barth, Popovic, Stott, PRB14, 2250 (1976).
- Zaremba, Sander, Shore, Rose, J. Phys. F: Met. Phys. 7, 1763 (1977).

Concept of embedding energy/Framework

Essentially...

- Norskov, PRB20, 446 (1979).

LDA results almost clarified.

Later...

- Puska, Nieminen & Manninen, PRB24, 3037 (1981).

Systematic database (rs = 2-8)

- J.-H. Song, Ph. D Thesis (Oregon State, supervisor: Jansen)(2004).

Best accurate results so far.

Kondo resonance

- Norskov, PRB20, 446 (1979).
- J.-H. Song, Ph. D Thesis (Oregon State, 2004)

- M. Shimomoto, K. Yoshizawa, Y. Takada (since 2006).

- A.I. Duff and J.F. Annett, Phys. Rev. B <u>76</u>, 115113 (2007).

Phase Shift

High density; Attractive/corresponding to H⁺ Low density; Repulsive/H⁻ or Kondo? More than one e⁻ around H⁺ seen from far outside

Kondo captured by DFT?

DFT/Z=1 embedded in jellium /Norskov, PRB20, 446 (1979)

 $r_s > 2$; KS level giving 'shallow & broad bound state'

- J-H. Song, PhD thesis, Oregon State Univ. (2004).

- M. Shimomoto , K. Yoshizawa, Y. Takada (since 2006).

- A.I. Duff and J.F. Annett, Phys. Rev. B <u>76</u>, 115113 (2007).

Kondo (Model Treatment)

Elementary... / Not considering resonance between free electron bath and an impurity

$$\delta n(r) \sim \left[\cos \left(2p_F r - \frac{\pi D}{2} + 2\delta_0 \right) - \cos \left(2p_F r - \frac{\pi D}{2} \right) \right]$$

Considering the resonance...

... Conventional form of the phase shift.

I. Affleck, L. Borda, and H. Saleur, Phys. Rev. B 77, 180404(R) (2008).

Resonance \rightarrow extension with imaginary part

$$\delta n(r) \sim \left[\cos \left(2p_F r - \frac{\pi D}{2} + 2\delta_0 \right) \cdot F(r/\xi_K) - \cos \left(2p_F r - \frac{\pi D}{2} \right) \right]$$

short-range; $F(r/\xi_K) = \exp[i \cdot 0] \cdots r \ll \xi_K$
Long-range; $F(r/\xi_K) = \exp[i \cdot \pi] \cdots r \gg \xi_K$
 $\delta_0 \rightarrow \left(\delta_0 + \frac{\pi}{2} \right)$; one more electron bound by

the attracting potential.

Kondo captured by DFT?

 $\rm r_s>2$; KS level giving 'shallow&broad bound state'

- KS orbital/non-physical entity
- DFT/its charge density is meaningful quantity

concerned KS orb. contribution

 \rightarrow occurring so that phase shift reproduces.

QMC calculation

More reliable treatment of electronic correlation.

 \cdot Calibration of LDA

Justification of DFT applied to metallic hydrogen

• QMC charge densities

also reproduce the phase shift captured by DFT?

QMC studies

For Z=0 upto N=106 (Jellium sphere)

- P. Ballone, C. J. Umrigar, and P. Delaly, Phys. Rev. B 45, 6293 (1992) ; VMC

- F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001) ; DMC

For Z=1

Sugiyama, Terray & Alder, J. Stat. Phys. 52, 1211 (1988) ; VMC
N=54 with PBC on a cubic supercell (3x3x3x2(spin))
3 <r_s <7 is reported as the region of repulsive/attractive transition
A.I. Duff and J.F. Annett, Phys. Rev. B <u>76</u>, 115113 (2007).
N=10 with fixed BC (i.e., solve in a finite-size sphere)
Friedel oscillation evaluated by δn(r)

Present study ; Z=1, upto N=170

Friedel Oscillation

Density difference from Z=0

finite size err. partly removed

Scattering by the sphere edge is common for 7=0 and $7\neq 0$

 \rightarrow eliminated by taking the difference to extract genuine scattering nature by Z.

$$\lambda = \left(\frac{N-1}{N-2}\right)^{\frac{1}{3}} \text{ ; scaling factor} \qquad \text{adjusting sphere scale} \quad R_B \propto N^{\frac{1}{3}}$$
$$\delta n(\vec{r}) = n(\vec{r})_{Z,N} - \lambda^3 \cdot n(\lambda \vec{r})_{Z=0,N-2}$$

adjusting the normalization

Technical stuff

to be prepared

Generate Trial Node by LDA

DMC by CHAMP

LDA generation of trial WF

Implementation of DFT for shperically symmetric systems (LDA part of PBE/Numerov method)

QMC calculation :

- High angular momentum (upto any L by recursive generation)
- Matrix operation with large size

(General treatment for Multi-det. Sometimes fails)

Calibration

w/o Potential Wall

GS energy for Z=0, N=106, rs=1.0.

Energy (eV/electron.) Std.err.

12.7965	-	LDA,S&B
12.7987	-	LDA,present
12.8678	*	VMC,S&B
12.8539	0.0047	VMC,present
12.8184	0.0043	DMC,S&B
12.8158	0.0001	DMC,present

- F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001)

Cusp and 1st peak

identified coming from $n(r) = n(0) \cdot \exp[-2Z \cdot r]$

 \rightarrow then it should converges the atomic density when $r_s \rightarrow \infty$

Z=2/He Atom

Coincides each other in dilute limit

Same tendency in LDA/DMC difference

Dilute limit/Z=1

C.J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).

$Z=2/r_s$ dependence

increases as system becomes dense

Diff. between LDA

The thicker the better agreements.

N-dependence

The more N, the more layered shell structure

Friedel Oscillation

Density difference from Z=0

finite size err. partly removed

Scattering by the sphere edge is common for 7=0 and $7\neq 0$

 \rightarrow eliminated by taking the difference to extract genuine scattering nature by Z.

$$\lambda = \left(\frac{N-1}{N-2}\right)^{\frac{1}{3}} \text{ ; scaling factor} \qquad \text{adjusting sphere scale} \quad R_B \propto N^{\frac{1}{3}}$$
$$\delta n(\vec{r}) = n(\vec{r})_{Z,N} - \lambda^3 \cdot n(\lambda \vec{r})_{Z=0,N-2}$$

adjusting the normalization

Typical occupation

to realize the stable calculation

s orbital subject to the resonance $r_s=1 (N=58)$ $r_s=4 (N=60)$ $r_s=4 (N=170)$ 4d 3s 6h **4**d 5d 91 11n **6h 6**g ----- Fermi level **4**s 3s 3p 5g 4f 3d 2s 2p 1s 5g 3p 4f 2s 3d 2p 1s 48kf7ihdgs94fd22p1s /drawn by Y. Takada (2014)

*Orbital name such as '1p', '1d' originates from Sottile et.al.

- F. Sottile and P. Ballone, Phys. Rev. B 64, 045105 (2001)

Friedel Ocsilation

QMC almost similar to DFT

A bit stronger attraction in QMC

Cusp description

Diff. btwn DMC and LDA (almost similar in Friedel Osc.)

 \rightarrow Diff. matters almost only on Cusp Intercept n(0)

$$n(r) = n(0) \cdot \exp[-2Z \cdot r]$$

Possible calibration ; $n_{LDA}(0) \rightarrow n_{DMC}(0)$

Cusp intercept

Cross-over around rs~2

[c.f., Hydrogen metal region (rs \leq 2.0)

over-estimation by $n_{LDA}(0)$

Summary by DMC

Charge density difference btwn DMC and LDA

Friedel Oscillation

Reproduced the Kondo resonance DFT captured with slight stronger attraction.

Cusp-intercept

Correction to $n_{LDA}(0)$