On the hunt for molecular organic battery materials

Martin Korth

Institute for Theoretical Chemistry, Ulm University

QMCIAA 2014 - 2014/07/31

Why batteries?

- the 'Energiewende': can you run an industrialized country with renewable energies only?
- transportation accounts for about one third of the energy bill; electrification of mobile power systems is difficult
- both fuel cells and (lithium ion) secondary batteries will be important
- ▶ current batteries cost about 500 to 750 \$ per kWh and can supply 150Wh/kg \rightarrow 250\$/kWh and 300Wh/kg in 2020 would be a major step forward

Lithium-ion batteries

'Intercalation chemistry'

Figure: Schaefer et al., Appl. Nanosci. 2011, DOI:10.1007/s13204-011-0044-x.

How to build better batteries?

Voltage (\rightarrow chemical potentials), capacity (\rightarrow charge per mass or volume), ... \rightarrow materials from the upper left and right ends of the periodic table of elements

Figures: Manthiram, J. Phys. Chem. Lett. 2011, 2, 176184.

Why electrolyte materials?

- outside of focus for many years, opposed to cathode materials
- found to be more and more often roadblocks for further progress

main issues: electrochemical stability & flash point vs ion conductivity/viscosity
Figure: Goodenough/Kim, Chem. Mater. 2010, 22, 587603.

Electrochemical stability: the (approximate) frontier orbital picture

Figure: Goodenough/Kim, Chem. Mater. 2010, 22, 587603.

Solid electrolyte interface (SEI) formation

Figure: Xu, Chem. Rev. 2004, 104, 4303-4417.

Current electrolytes

- solvents: mixtures of cyclic (highly polar, highly viscous) and linear (less polar, less viscous) organic carbonates, typically 50:50 EC/EMC
- salts: typically LiPF6
- additives: e.g. flame-retardants

solvents are the least stable component of the electrolyte

Alternative electrolytes

- gel polymers safer, lower ion conductivity
- ionic liquids more stable, safer, higher viscosity, too expensive?
- polymers and solids very safe, low ion conductivity

more stable electrolyte solvents: esters, carbamates, F-ethers, sulfamides, sulfones

Why molecular organic materials?

Shoichet, Nature Chemistry 2013, 5, 9.

- chemical space is the ensemble of all organic molecules to be considered when searching for new drugs: 10⁶⁰ molecules
- GDB-13 database: chemically stable and synthetically feasible molecules up to 13 atoms of C, N, O, Cl, S: 977 million structures
- chemical space is vast chemical intuition vs diversity orientation; chemical space is rather uniform – retrosynthesis etc. works

State of the art: Static computational studies

focus on SEI formation in standard systems

- Balbuena and co-workers made use of density functional theory (DFT) methods to publish a first series of thorough investigations into the reductive decomposition of solvent molecules starting around 2000
- subsequently, similar studies on reductive and oxidative decomposition of several solvents and additives by Tasaki, Han, Curtiss, Johansson, Xing, Borodin, ...
- Li+ de/solvation and intercalation investigated by for instance Bhat, Henderson/Borodin, Tasaki/Winter (see later), ...
- standard applications now include the computation of orbital values (HOMO/LUMO) as estimators for redox stability and/or spectra (e.g. Cekic-Laskovic *et al.*, *Electrochimica Acta* **2012**, *78*, 251.)

For details and references see: MK, Computational studies of SEI formation, Specialist Periodical Reports: Chemical Modeling: Applications and Theory, London 2014. in press

Insight from static studies

Wang et al.

Figure 3. (a) Potential energy (underlined data) and Gibbs free energy profile at 298.15 K for the reductive dissociation process of Li+[EC]; calculated with B37W91/6-311++0(d_p)// B37W91/6-31G(d) method. (b) Temination paths for the radical anion from the reductive dissociation process Li+[EC], calculated with B37W91/6-311++0(d_p)//837W91/6-31G(d) method.

- complex picture of competing one- and two-electron decomposition pathways (e.g., Balbuena: EC decomposes in stepwise two-electron process to LBDC, LEDC, Lithiumcarbonate plus ester and carbide compounds)
- especially Borodin's work emphasizes the importance of at least one explicit solvent molecule (H-abstraction) and counter ions

State of the art: Dynamic computational studies

focus on ionic liquids and again SEI formation

- classical molecular dynamics (MMMD) studies on electrolyte bulk properties by Tasaki, Borodin & Co. (Smith, Xing, Bedrov, ...) and others, as well as on electrolyte structuring on polarized electrodes by Borodin & Co.
- extensive work on ionic liquids by Borodin & Co., see also (polymer/ionic liquid) Diddens/Heuer, ACS Macro Lett. 2013, 2, 322; J. Phys. Chem. B 2014, 118, 1113.
- reactive force field (ReaxFF) MD studies on SEI formation (van Duin, Bedrov, ...) – but reaction barriers remain problematic
- first series of *ab initio* MD studies on SEI formation by Leung and co-workers from 2010 on; subsequently several AIMD studies also by others on Li+ de/solvation, intercalation, etc.

For details and references see: MK, Computational studies of SEI formation, Specialist Periodical Reports: Chemical Modeling: Applications and Theory, London 2014. in press

Insight from dynamic studies

Scheme 2. Current Scenarios for Reduction of Cyclical Carbonates and the Formation of SEI Components^a

^aIn this Scheme, Q stands for the -OCO₃⁻ Li⁺ group. Shkrob et al. J. Phys. Chem. C **2013** 117, 19255.

- Leung's AIMD studies suggest a fast two-electron, CO-realizing route to LEDC; he even double-checked his results with static computations
- neither Leung's (barriers with GGA DFT) nor Balbuena's (biased pathway selection) work is likely the final answer
- first experimental observation of SEI-relevant radical intermediates by Abraham and co-workers illustrates the complexity of SEI formation, emphasizing rapid H-abstraction and migration, as well as radical and anionic polymerization Shkrob et al. J. Phys. Chem. C 2013 117, 19255; J. Phys. Chem. C 2013 117, 19270.

State of the art: Screening studies

large body of work by Ceder and co-workers on electrode materials

several studies by Han and co-workers on electrolyte solvents and SEI additives e.g. Journal of Power Sources, 2009, 187, 581. (108 molecules with DFT) Journal of Power Sources, 2011, 196, 5109. (now also Li+ binding affinity)

 Hall/Tasaki: electronic properties for over 7000 EC derivatives with PM3 Journal of Power Sources, 2010, 195, 1472.

► Tasaki: six graphite intercalation compounds (→ Tasaki/Winter) J. Phys. Chem. C 2014, 118, 1443.

other work includes Dahn (e.g. redox shuttles), Ceder (ionic liquids), ... as well as several studies on Li-air electrolyte solvents by Bryantsev and co-workers

 Amine/Curtiss and co-workers: electronic properties and SEI formation, library with 400 compounds as of May 2013, unpublished ongoing work

For details and references see: MK, Computational studies of SEI formation, Specialist Periodical Reports: Chemical Modeling: Applications and Theory, London 2014. in press

General strategy

dynamic studies:

development of a QM/MM approach for electrochemical systems (FOR1376 DFG research group)

static studies:

standard quantum chemistry tool box (DFT-D, MP2, CEPA, CC) \rightarrow 'redox fingerprinting' to estimate SEI composition

screening studies:

beyond orbital energies ...

- state of the art computational chemistry for basic properties
- methods from chemical engineering for estimating collective properties
- tools from chemoinformatics for structure generation, data handling, ...

Last QMCIAA talk -1-

benchmark study on computing electrochemical stability windows

$$V_{ox} = -\Delta G_{ox}/nF$$
 and $V_{red} = -\Delta G_{red}/nF$

oxidation and reduction potentials

$$\Delta G_{ox} = \Delta G(X) - \Delta G(X^+)$$
 and $\Delta G_{red} = \Delta G(X^-) - \Delta G(X)$

electronic energies plus enthalpic/entropic/solvation (RRHO/COSMO) effects

$$\Delta G = \Delta H - T\Delta S + \Delta G_{solvation}$$

... or just HOMO and LUMO values? From semiempirical QM (SQM) instead of hybrid DFT methods?

 $E_{HOMO} \approx IP = \Delta E_{ox} \approx \Delta G_{ox}$ and $E_{LUMO} \approx EA = \Delta E_{red} \approx \Delta G_{red}$

- evaluation of electronic structure theory methods and approximations for ranking(!) compounds with respect to redox stability
- suggested screening protocol: SQM orbital energies for pre-screening, CEPA/QZVP free energy-based for final results

MK Phys. Chem. Chem. Phys. 2014, 16, 7919.

But ...

- … looking at the electrochemical stability only does not allow to make helpful suggestions for experimentalists
- at least viscosities and flash points have to be taken into account
- accurate ab initio predictions practically impossible
- classical MD methods need extensive parametrization for acceptable results
- chemical engineering models like COSMOTHERM can do the job
- ▶ 'melting point prediction is black magic' (A. Klamt) → only purely empirical 'quantitative structure property relationship' (QSPR) methods available

... sad but true ...

COSMO-RS/COSMOTHERM

- alternative to group contribution method on one side and simulation on the other for calculating thermodynamic properties of liquid mixtures
- available for arbitrary species as system-specific parameters are derived from DFT
- enthusiastically taken up by chemical engineers over the last few years
- get 'sigma profiles' from DFT/COSMO calculations to estimate intermolecular interactions
- use simplified statistical thermodynamics models to estimate macroscopic properties
- global parameters fitted to large sets of experimental data

A. Klamt, F. Eckert, W. Artl, Annu. Rev. Chem. Biomol. Eng. 2010, 1, 101.

The extended tool box: cosmotherm

Viscosity [cP]				Flash Point [°C]				
MAD=0.22, Pe	earson=0.95,	Kendall=0.78	3	MAD=22.86, Pearson=0.95, Kendall=0.73				
Electrolyte	Calculated	Measured	Deviation	Electrolyt	Calculated	Measured	Deviation	
1,3-DL	0,74	0,59	0,15	1,3-DL	-24,0	1	-25,0	
2-Me-1,3-DL	0,87	0,54	0,33	2-Me-1,3-DL	-6,5			
2-Me-THF	0,62	0,47	0,15	2-Me-THF	-16,6	-11	-5,6	
4-Me-1,3-DL	0,86	0,60	0,26	4-Me-1,3-DL	-8,1	-2	-6,1	
BL	1,10	1,73	-0,63	BL	63,1	97	-33,9	
DEC	0,76	0,75	0,01	DEC	-1,5	31	-32,5	
DEE	0,90			DEE	12,1	20	-7,9	
DMC	0,61	0,59	0,02	DMC	-30,7	18	-48,7	
DME	0,55	0,46	0,09	DME	-31,5	0	-31,5	
DMM	0,40	0,33	0,07	DMM	-61,8	-17	-44,8	
EA	0,50	0,45	0,05	EA	-30,0	-3	-27,0	
EB	0,75	0,71	0,04	EB	4,3	19	-14,7	
EC	1,81	1,90	-0,09	EC	97,5	160	-62,5	
EMC	0,69	0,65	0,04	EMC	-15,3		-15,3	
MB	0,65	0,60	0,05	МВ	-12,2	11	-23,2	
NMO	1,60	2,50	-0,90	NMO	111,7	110	1,7	
PC	1,79	2,53	-0,74	PC	102,8	132	-29,2	
THF	0,50	0,46	0,04	THF	-37,4	-17	-20,4	
VL	1,41	2,00	-0,59	VL	85,4	81	4,4	

Table 1: Viscosity and flash point

The extended tool box: QSPR/cosmotherm

Melting Point [°C]				Boiling Point [°C]				
MAD=17.69, F	Pearson=0.87,	Kendall=0.7	75	MAD=22.64, Pearson=0.98, Kendall=0.76				
Electrolyte	Calculated	Measured	Deviation	Electrolyte	Calculated	Measured	Deviation	
1,3-DL	-75,7	-95,0	19,3	1,3-DL	96,8	78	18,8	
2-Me-1,3-DL	-40,9			2-Me-1,3-DL	123,9			
2-Me-THF	-97,2	-137,0	39,8	2-Me-THF	112,1	80	32,1	
4-Me-1,3-DL	-40,9	-125,0	84,1	4-Me-1,3-DL	121,2	85	36,2	
BL	-36,7	-43,5	6,8	BL	237,9	204	33,9	
DEC	-37,0	-74,3	37,3	DEC	124,8	126	-1,2	
DEE	-69,7	-74,0	4,3	DEE	144,5	121	23,5	
DMC	-15,0	4,6	-19,6	DMC	78,9	91	-12,1	
DME	-59,6	-58,0	-1,6	DME	80,7	84	-3,3	
DMM	-98,4	-105,0	6,6	DMM	36,6	41	-4,4	
EA	-83,8	-84,0	0,2	EA	84,2	77	7,2	
EB	-86,9	-93,0	6,1	EB	134,0	120	14,0	
EC	22,6	36,4	-13,8	EC	284,3	248	36,3	
EMC	-38,0	-53,0	15	EMC	103,2	110	-6,8	
MB	-83,6	-84,0	0,4	МВ	109,1	102	7,1	
NMO	40,1	15,0	25,1	NMO	320,0	270	50,0	
PC	-15,2	-48,8	33,6	PC	299,0	242	57,0	
THF	-100,1	-109,0	8,9	THF	81,9	66	15,9	
VL	-17,3	-31,0	13,7	VL	278,4	208	70,4	

Table 2: Melting and boiling point

Screening at work: nitrile solvents

- ▶ generate all stable (poly-)nitriles (e.g. no double or triple bonds etc.) up to 12 heavy atoms: $(NC)_{n=1\rightarrow5}C_{12-2n}H_{1\rightarrow23} \rightarrow about 5000$ compounds
- compute viscosities, boiling/flash/melting points, electrochemical stabilities and free energies of solvation of Li+, Mg2+, Al3+ and PF6- ions
- (compute free energies of solvation for a database of about 60 ionic liquid anions and 110 cations)
- ... this gives lots of numbers but how to pick 'best' structures?
- keep only structures which are above average for all properties
- drop structures which are not pareto-optimal
- T. Husch, N. D. Yilmazer, A. Balducci, MK, submitted.

Nitrile solvents: results

slide available on request

Screening at work: sulfonyl solvents

slide available on request

Screening at work: cyano-ester solvents

slide available on request

So we can make experimentalists happy, what's next?

1. More/accurate properties

- properties described very accurately: (ideal) electrochemical stability (via empirical, SQM, DFT, higher-level)
- properties described comparably well: melting/flash/boiling points, pure viscosities (via cosmotherm/QSPR)
- properties we like to be better at: free energies of solvation, solubilities, mixed viscosities (via cosmotherm)
- properties we have only a rough idea about: dielectric constants, conductivities (via dipole moments, viscosities, orbitals)
- properties not yet included in our scheme: toxicity, synthetic feasibility and cost (possible via QSPR)

What's next -2-

2. Multifunctionalization: chemical vs 'functional group' space

- virtual drug design screens chemical space because small structural differences can easily lead to less favorable interactions with target proteins
- ▶ for liquid phase properties, many features are averaged out → closer to the chemical intuition of functional groups
- is it more efficient to screen 'functional group space' for multifunctional electrolytes?

3. Model system based estimators for complex properties

- 'screenable' estimators for relationships suggested by experimentalists
- ▶ for instance Li+ binding affinity, graphite intercalation compound stability (next slides)
- systematically generated experimental references missing

Li+ binding affinity as estimator for graphite exfoliation

Figure: Xu, Chem. Rev. 2004, 104, 4303-4417.

- PC vs EC: 'a single methyl group delayed the emergence of Li ion technology by four decades!' (Xu/v.Cresce, J. Mater. Chem. 2011, 21, 9849.)
- automatic Li+ bonded model system generation to compute Li+ binding affinity
- no systematically obtained experimental data available yet

Automatic graphite intercalation compound (GIC) model system generation

- Tasaki/Goldberg/Winter: EC-GICs more stable than PC-GICs; increased interlayer distance for PC-GICs Tasaki et al. Electrochimica Acta 2011, 56 10424.
- coronen sandwich setup reproduces both features at PM6-DH+ level: Heat of Formation -14.2 vs -12.1 kcal/mol; interlayer distance 7.0 vs 7.6 Å

PM6-DH+: MK, J. Chem. Theory Comput., 2010, 6, 3808.

The computational battery researcher's holy grail: predicting SEI composition and properties

- effective electrochemical stability is much higher for compounds which form stable SEI films
- no computational model available for the atomic-scale description of SEI formation
- static (quantum chemistry) studies are biased, dynamic (AIMD) studies inaccurate, QM/MM might help a bit
- none of these approaches is 'screenable'

'You can't compute cake.' (D. Bressanini)

Can we screen for critical SEI components? - 'Redox fingerprints'

- automatic setup of all possible redox pathways (for a given set of basic rules for allowed redox steps)
- currently implemented for simple reduction steps, which by fragmentation and recombination lead to ...

... and many more possible decomposition pathways ...

Redox fingerprints: results & outlook

all suggested products (and many more) are generated

- results in agreement with previous static studies
- currently available: solubility-check
- upcoming: oxidation, explicit solvent effects, counter-ions
- more complicated: polymerization-check
- biggest challenge: (fast, automatic) barriers!
- implicit electrode effects?
- benchmark studies on the redox fingerprints of typical solvents
- comparison to experimental high-throughput work (Meet/Münster)

MK, submitted.

How QMC could be useful for battery research

- FCIQMC references for EC decomposition pathways
- QMC(/MM) MD studies of initial SEI formation
- QMC studies of Li+ desolvation and intercalation
- QMC studies on electrode materials ...

Summary & Outlook

- large scale computational screening of basic and collective properties
- 'blind' predictions in agreement with experiment
- additional model system based estimators (BEs, GICs and redox fingerprints)
- experimental high-throughput studies in preparation at Meet/Münster

http://qmcathome.org

- Students: Tamara Husch, Duygu Yilmazer, Sebastian Dohm
- Collaborators: Eckhard Spohr/Duisburg-Essen, Andrea Balducci/Münster, Zhirong Zhao-Karger@Fichtner/KIT, Tobias Schwabe/Hamburg
- Money: DFG, Barbara Mez-Starck Foundation