Some Correlation Problems – and One Partial Solution

A partially solved problem He scattering from MgO(100)

An interesting problem Polyacetylene (again)

The ultimate problem (unsolved, obviously) Magnetocaloric cooling of systems like (Ca,La)MnO₃

1. He Scattering From MgO(100)

A Well Defined Problem (for an oxide surface)

The Experiment

Peter Toennies, Göttingen Bill Allison, Cambridge

- **1.** Elastic Diffraction
- 2. Inelastic energy loss
- 3. **Resonance in traps**
- 4. Trapping

The Problem – Compute the Potential

Weak interaction – London dispersion at long range

Methodology

CRYSTAL14 – local Gaussian orbitals

Truncated summation of analytic integrals on the periodic lattice => exact exchange calculated efficiently

Hybrid exchange: B3LYP functional (20% Fock exchange) (Reliablity established now in some 100+ periodic systems)

Triple / Quadruple + polarisation valence basis sets

http://www.crystal.unito.it

Who did the hard work – CRYSTAL / CRYSCOR

A reliable and efficient code for periodic MP2 theory

Imperial College London

Local MP2

Local functions describing the occupied manifold

Local functions describing the virtual manifold

Truncation of the occupied space: Wannier-Wannier pairs

Reduction of the virtual space: PAOs & W-W pair domains

Scaling with system size

Single processor AMD Opteron 2.2 GHz

MgO(100)-He

2x2 supercell (negligable lateral interactions)5 layer slab + extrapolation to infinite slab

HF + LMP2 Binding

Diffraction Data for a range of He KE (27 – 60 meV)

FIG. 4: Comparison of the CC intensities for case 1 (red stars) and case 2 (blue circles) with the experimental spectra (black lines) and the peak areas (black squares). Diffraction peaks are given in counts/s; peak areas and CC intensities have been normalized in a way that the specular (central) peak appears at the maximum of the experimental peak. The considered incident energy are the following: (a) $E_i = 26.62 \text{ meV}$, (b) $E_i = 33.30 \text{ meV}$, (c) $E_i = 40.02 \text{ meV}$, (d) $E_i = 48.96 \text{ meV}$, (e) $E_i = 50.20 \text{ meV}$ and (f) $E_i = 60.47 \text{ meV}$.

Expt.
 MP2

Pragmatic Approaches..... (Fiddling)

Scaling the MP2 contribution by comparison to CCSD(T) in model systems:

E = HF + 1.65*MP2

Close the single particle gap and the MP2 contribution increases suggesting: E = B3LYP + MP2(B3LYP)

Both give similar energy surfaces with a deeper minimum...

Computed Binding Energy : He-MgO(100)

Well depth measured 7.0 - 12.5 meV MP2 [4meV] MP2(B3LYP) [6.7 meV]

Comparison with Measured He Scattering

- 🗆 expt
- ★ MP2
 - MP2(B3LYP)

Incident Energies (meV) a. 26.62 b.33.30 c.40.02 d.48.96 e.50.20 f.60.47

Bound States

	Exp.1 (meV)	Exp.2 (meV)
E ₀		-10.2
E ₁	-5.5	-5.3
E ₂	-2.6	-2.4
E ₃	-1.2	-0.9
E ₄	-0.5	-0.6
E ₅	-0.3	-0.2

Exp.1- M. Mahgefteh and D.R. Jung and D.R. Frankl, Phys. Rev. B 39, 3900 (1989)

Exp.2 - G. Benedek and G. Brusdeylins and V. Senz and J. G. Skofronick and J. P. Toennies and F. Traeger and R. Vollmer, Phys. Rev. B 64, 125421 (2001)

Approaching the Exact Energy Surface

Calculate the difference between the MP2 energy and the exact energy using a finite cluster

Systematically improve:

 $\sum \left(\Delta E^{\text{CCSD}(\text{T})} - \Delta E^{\text{LMP2}}_{\text{intra-He}}\right)$

 $-f_{\text{intra-Mg}_3\text{Na}_2\text{O}_4}\Delta E_{\text{intra-Mg}_3\text{Na}_2\text{O}_4}^{\text{LMP2}} - f_{\text{inter}}\Delta E_{\text{inter}}^{\text{LMP2}}\Big)^2$

- 1. Theory: MP2 CCSD CCSD(T) CCSDT(Q)
- 2. Basis Set: aug-cc-VDZ VTZ VQZ
- 3. Cluster size:

For Na₂Mg₃O₄ Cluster Scaled MP2 Energy

Approaching the Exact Answer (Lateral Average)

A deeper bound state in the potential... but error analysis suggests that 10.2eV is not present

Reasonable agreement with the diffraction intensities

Diffraction Intensities

A deeper bound state in the potential... but error analysis suggests that 10.2eV is not present Reasonable agreement with the diffraction intensities

He-Scattering MgO(100)

A powerful method for surface analysis if the potential is known.

It seems that it is possible to get close to the exact potential in a systematic way but only with some effort.

He Scattering the Structural Probe....

High quality data for LiF (etc), TiO_2

Solving for a structure requires a simple potential model.

- Develop a pairwise O²⁻-He interaction potential (none of the obvious functional forms fit well) and test transferability
- 2. A much faster method with ~1meV accuracy

2. Polyacetylene

Peierls Distortion

B3LYP nospin - equal CC distances

-15

-20 (0,0,0)/2

(1,0,0)/2

Energy Gap and Bond Length Alternation

Method	<i>a</i> (Å)	C-C (Å)	BLA (Å)	х _С	E_g (eV)	ΔE (eV)
EXP	2.46	1.36, 1.44	0.08	-	1.4-1.9	-
B3LYP	2.467	1.363,1.424	0.061	0.514	1.246	0.015
LDA	2.450	1.379,1.391	0.012	0.503	0.102	0.000
HF	2.460	1.328,1.455	0.126	0.529	7.270	0.146

Spin Polarisation – Symmetric Geometry

spin moment ^(μ_B)	B3LYP	LDA	HF
	0.22	0.01	0.86
S _H	0.01	0.00	0.05

Spin Polarisation vs Dimerisation

B3LYP nospin dimerised

Same energy (~0.3 meV) in B3LYP

Band gap after spin or spatial (or both) symmetry breaking always ~1eV

Acknowledgements

Rutherford Appleton Laboratory (UK) Dr Barbara Montanari

Imperial College, London (UK) Dr Ruth Martinez-Casado (now Univ. of Madrid) Dr. Giuseppe Mallia **Turin University, Turin (Italy)** Dr. Lorenzo Mazchio Dr. Silvia Casassa **Prof.** Cesare Pisani **Regensburg University (Regensburg, Germany) Prof. Martin Schuetz** Dr. Denis Usvyat