
Some Correlation Problems – and One Partial Solution 

A partially solved problem 
 He scattering from MgO(100) 

 
An interesting problem 

 Polyacetylene (again) 
 
The ultimate problem (unsolved, obviously) 

 Magnetocaloric cooling of systems like (Ca,La)MnO3  



1. He Scattering From MgO(100) 



A Well Defined Problem (for an oxide surface) 



The Experiment 

Peter Toennies, Göttingen 
Bill Allison, Cambridge 

1.  Elastic Diffraction 

2.  Inelastic energy loss 

3.  Resonance in traps 

4.  Trapping 



The Problem – Compute the Potential 

Weak interaction – London dispersion at long range  
 



Methodology 

CRYSTAL14 – local Gaussian orbitals 
 
Truncated summation of analytic integrals on the periodic 
lattice => exact exchange calculated efficiently 
 
Hybrid exchange: B3LYP functional (20% Fock exchange) 
(Reliablity established now in some 100+ periodic systems)  
 
Triple / Quadruple + polarisation valence basis sets 
 
http://www.crystal.unito.it 



Who did the hard work – CRYSTAL / CRYSCOR 

A  reliable and efficient code for periodic MP2 theory 
 
 
 
 
 
 



Local MP2 

Local functions describing the occupied manifold 
 
Local functions describing the virtual manifold 
 
Truncation of the occupied space: Wannier-Wannier pairs 
 
Reduction of the virtual space: PAOs & W-W pair domains 



Scaling with system size 

Single processor AMD Opteron 2.2 GHz 
 
 
 
 
 
 



MgO(100)-He 

2x2 supercell (negligable lateral interactions) 
5 layer slab + extrapolation to infinite slab 
 
 
 
 
 
 



HF + LMP2 Binding 

D ~ 4 meV  
Measured 7.5-12 meV 



Diffraction Data for a range of He KE (27 – 60 meV) 

n      Expt. 

★      MP2 



Pragmatic Approaches….. (Fiddling) 

Scaling the MP2 contribution by comparison to CCSD(T) 
in model systems:    

      E = HF+1.65*MP2 
 
 
Close the single particle gap and the MP2 contribution 
increases suggesting: 

      E = B3LYP + MP2(B3LYP) 
 
Both give similar energy surfaces with a deeper minimum… 
 
 
 
 
 



Computed Binding Energy : He-MgO(100) 

Well depth measured   7.0 - 12.5 meV 
MP2 [4meV] 
MP2(B3LYP) [6.7 meV] 



Comparison with Measured He Scattering 
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★  - MP2



¢ - MP2(B3LYP) 

 

Incident Energies 
(meV) 

a.   26.62 

b.  33.30 

c.  40.02 

d.  48.96 

e. 50.20 

f. 60.47 
 



Bound States 

Exp.1- M. Mahgefteh and D.R. Jung and D.R. Frankl, Phys. Rev. B 39, 3900 (1989) 

Exp.2 - G. Benedek and G. Brusdeylins and V. Senz and J. G. Skofronick and J. P. Toennies 
and F. Traeger and R. Vollmer, Phys. Rev. B 64, 125421 (2001) 

 

Exp.1 (meV) Exp.2 (meV)  

E0 --- -10.2 

E1 -5.5 -5.3 

E2 -2.6 -2.4 

E3 -1.2 -0.9 

E4 -0.5 -0.6 

E5 -0.3 -0.2 



Approaching the Exact Energy Surface 

Calculate the difference between the MP2 energy and the 
exact energy using a finite cluster 
 
Systematically improve: 
 
1.  Theory: MP2 – CCSD – CCSD(T) – CCSDT(Q) 
2.  Basis Set: aug-cc-VDZ – VTZ – VQZ 
3.  Cluster size: 

 



For Na2Mg3O4 Cluster  Scaled MP2 Energy 



Approaching the Exact Answer (Lateral Average) 

Exp.1  Exp.2  Calc 
(UPS3) 

E0 --- -10.2 -8.1 

E1 -5.5 -5.3 -4.5 

E2 -2.6 -2.4 -2.2 

E3 -1.2 -0.9 -0.9 

E4 -0.5 -0.6 -0.3 

E5 -0.3 -0.2 --- 

A deeper bound state in the potential… but error analysis 
suggests that 10.2eV is not present 
Reasonable agreement with the diffraction intensities 



Diffraction Intensities 

A deeper bound state in the potential… but error analysis 
suggests that 10.2eV is not present 
Reasonable agreement with the diffraction intensities 

Exp.1  Exp.2  Calc. 

E0 --- -10.2 -8.1 

E1 -5.5 -5.3 -4.5 

E2 -2.6 -2.4 -2.2 

E3 -1.2 -0.9 -0.9 

E4 -0.5 -0.6 -0.3 

E5 -0.3 -0.2 --- 



He-Scattering MgO(100)  

A powerful method for surface analysis if the potential is 
known. 
 
It seems that it is possible to get close to the exact potential in 
a systematic way but only with some effort. 
 
 
 



He Scattering the Structural Probe…. 

High quality data for LiF (etc), TiO2 …. 
 
Solving for a structure requires a simple potential model. 
 
1.  Develop a pairwise O2--He interaction potential (none of 

the obvious functional forms fit well) and test 
transferability 

2.  A much faster method with ~1meV accuracy 



2.  Polyacetylene 



Peierls Distortion 



Energy Gap and Bond Length Alternation 



Spin Polarisation – Symmetric Geometry 

spin moment (µB 
)  B3LYP  LDA   HF  

|S |
C    0.22   0.01   0.86   

|S |H    0.01   0.00   0.05   



Spin Polarisation vs Dimerisation 

Same energy (~0.3 meV) in B3LYP  



Summarising…. (B3LYP) 

0.26 eV 

0.06 Ang 

Band gap after spin or spatial (or both) symmetry breaking always ~1eV 
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