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Introduction.

Differences in stacking of hexagonal layers.

❛�✁

❛�✁✁

Figure : Hexagonal ice, Ih (blue).
ABAB stacking of bilayers.
a-I and a-II show chair and boat
form hexamers, respectively, the two
basic building blocks of Ih.

❜�✁

Figure : Cubic ice, Ic (red).
ABC stacking of bilayers.
b-I shows a chair form hexamer.
Cubic ice does not contain boat
form hexamers.
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Introduction.

Proton disorder in a nutshell.

Bernal-Fowler ice rules.

1 Each oxygen is covalently bonded to two hydrogen atoms.
2 Each oxygen accepts and donates two hydrogen bonds

from/two other oxygens.

Defect-free ice consists of tetrahedrally coordinated water
molecules bound in a hydrogen bond network.
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Introduction.

Proton disorder in a nutshell.

Bernal-Fowler ice rules.

Pauling’s residual configurational entropy.
Paulings residual configurational entropy [1] has been
confirmed experimentally by measuring the entropy differences
between pure and KOH-doped ice [2, 3]. The configurational
free energies of bulk Ih and Ic are almost identical, since they
are effectively determined by the tetrahedral coordination of
the molecules [4].
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Introduction.

Proton disorder in a nutshell.

Bernal-Fowler ice rules.

Pauling’s residual configurational entropy.

Choice of polytypes for this study.
16 symmetry-unique eight-molecule Ih configurations [5] and
11 symmetry-unique proton-ordered Ic configurations [6].
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Energetics.
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Figure : Harmonic free energies,
Ghar, (empty squares) and total free
energies, Ganh, (filled squares),
measured with respect to
GXIh

har
(Cmc21).
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Figure : Anharmonic vibrations
stabilise Ih with respect to Ic across
a wide temperature range.
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Vibrational pressure.
Beyond principal axes approximation effects.

Vibrational pressure - Results.

Vibrational pressure of ∼ 0.45± 0.05 GPa.

Zero temperature expansion of ∼ 4% which agrees well with
other ab initio DFT and path-integral MD studies [7].

Expanded volumes including vibrations agree with experiment
to within ∼ 1%.

Vibrational frequencies and anharmonicity do not change
significantly upon evaluation at the expanded volume.
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Vibrational pressure.
Beyond principal axes approximation effects.

Coupling of vibrational modes.

Next level of approximation: coupling of vibrational modes.

Pairwise coupling of vibrational modes already requires
mapping of 2D Born-Oppenheimer surfaces and scales as N5.

Calculations for the primitive unit cells of ice Ih and Ic
indicate that including pairwise coupling of vibrational modes
leads to a small increase in the differences in anharmonicity
between ice Ih and Ic.
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Dominant contributions to anharmonicity.

Origin of differences in anharmonicity - I.
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Figure : Cumulative anharmonic
energies as a function of frequency.

Results averaged over
proton-orderings.

Phase uanh uhar ∆u

[Å] [Å] [Å]

Ih 0.225 0.227 -0.002
Ic 0.220 0.225 -0.005

Table : RMS displacements of the
protons at the harmonic, uhar, and
anharmonic level, uanh, and the
difference due to anharmonicity, ∆u.
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Dominant contributions to anharmonicity.

Origin of differences in anharmonicity - II.
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Figure : H-H RDFs for Ih (blue) and
Ic (red).

For r < 3 Å

At the harmonic level (green),
the difference between Ih and Ic,
∆ghar ≡ g Ih

har
− g Ic

har
, is minimal.

At the anharmonic level (black),
the difference between Ih and Ic,
∆ganh ≡ g Ih

anh
− g Ic

anh
, is

non-negligible.

For r > 3 Å:

The differences in the static
structures of Ih and Ic become
dominant.
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Structural origin of differences in anharmonicity.
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Figure : Anharmonic H-H RDF decomposed into contributions from
different bonding configurations of fourth-nearest neighbour pairs of
protons.
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Conclusions and next steps.

Relevance of Ih and Ic:

climate modelling and the simulation of ice nucleation and
formation.

potential relevance in biological sciences in the context of
cryopreservation.

Importance of anharmonic vibrations:

in hydrogen bonded molecular crystals: likely to be crucial in
correctly describing the energy differences between very similar
such polymorphs, e.g., in pharmaceutical science.

in various other examples as in B. Monserrat’s talk.

at ice surfaces (basal and prism surfaces in Ih and basal in Ic).

around impurities or other defects.
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Convergence behaviour.
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Figure : Convergence of the harmonic (top) and anharmonic
contributions (bottom) to the vibrational energy with supercell size.
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Figure : Anharmonic components of
the BO energies,
∆Eanh ≡ Eanh − Ehar, for the
highest energy vibrational modes in
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Figure : The differences in ∆Eanh

between the highest energy
vibrational modes in Ih and Ic for
different density functionals are
shown as thin continuous and dotted
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Figure : Protonated ice.
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Figure : Deuterated/heavy ice.

Ghar (empty squares) and Ganh (filled squares) measured with
respect to GXIh

har
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Vibrational pressure - Self-consistency problem.

Initial static equilibrium structure.

Structure relaxed at ambient pressure.

Harmonic approximation to the BO
surface.

Evaluate phonon modes and

frequencies.

Anharmonic calculation.

Evaluate anharmonicity and resultant
phonon pressure.

Equilibrium structure at expanded
volume due to lattice vibrations.

Rerelax equilibrium structure taking

into account phonon pressure.

Check for self-consistency.

If phonon pressure matches ambient

pressure, then exit self-consistency loop.

Final structure at expanded volume due
to lattice vibrations.

The phonon pressure matches the
external ambient pressure.
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