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Introduction: Gallium and Indium Chalcogenides

• Two-dimensional materials: graphene, hexagonal boron nitride, silicene, germanane,
a variety of transition metal dichalcogenides, gallium chalcogenides, . . .

• New members of the family: gallium chalcogenides (Ga2S2, Ga2Se2 and Ga2Te2)
and indium chalcogenides (In2X2, In2Se2 and In2Te2). We will focus on the latter.

• Indium chalcogenides take a wide variety of forms, including tetragonal, rhombohedral,
cubic, monoclinic, orthorhombic and hexagonal phases.

• Indium selenide (InSe) exists in a layered hexagonal structure in nature with an
in-plane lattice parameter of 4.05 Å and vertical lattice parameter of 16.93 Å.

– InSe has been proposed for use in ultrahigh-density electron-beam data storage.
– Very recently, Ajayan and coworkers at Rice University and Los Alamos have

succeeded in producing samples of few-layer (4–11 layers) hexagonal InSe by
mechanical exfoliation.

• Indium sulphide (InS) and indium telluride (InTe) exhibit orthorhombic and tetragonal
structures, respectively, but it may be possible to prepare a hexagonal structure.



Structure of α Indium Chalcogenides

• Structure of α-In2X2 monolayers:

– Viewed from above, the monolayer forms a 2D honeycomb lattice.
– Vertically aligned In2 and X2 pairs at hexagonal A and B sublattice sites.
– The In atoms in each In2 dimer are bound together, and each In atom is bound to

the neighbouring X atoms.
– Distance between the atoms within each X2 pair is considerably larger.
– D3h point group (includes z → −z reflectional symmetry).



Structure of β Indium Chalcogenides

• Structure of β-In2X2 monolayers:

– Vertically aligned In2 dimers are located at hexagonal A sublattice sites.
– One layer of X atoms is located at the B sublattice sites.
– The other layer of X atoms is located at the C sublattice sites.
– D3d point group (includes inversion symmetry).



Computational Methodology and Structural Parameters

• Density functional theory using the CASTEP and VASP plane-wave-basis codes.

– LDA, PBE and HSE06 functionals (latter only for calculating the band structure).
– Phonon dispersion curves calculated using both finite displacements and density

functional perturbation theory.

• Experimental lattice parameter of bulk hexagonal InSe: a = 4.05 Å.

– C.f., for monolayer α-In2Se2, a = 3.95 and 4.09 Å according to the LDA and PBE
functionals, respectively.

– LDA bond lengths are systematically smaller than the PBE bond lengths.

• Lattice parameters increase with the atomic number of the chalcogen, while the In–In
bond lengths hardly change.



Cohesive (Atomisation) Energy

• Cohesive energy Ec: energy of two isolated indium atoms plus the energy of two
isolated chalcogen atoms minus the energy per unit cell of the In2X2 layer.

– Difference between LDA and PBE cohesive energies is significant; nevertheless,
both predict the cohesive energy to be largest for In2S2 and smallest for In2Te2.

– The β structures are dynamically stable, but the static-lattice cohesive energy is
slightly less than that of the α structures (by 0.022 and 0.013 eV per unit cell
according to the LDA and PBE functionals, respectively).

– Very small energy difference between the structures.
– Inclusion of phonon zero-point energy makes no difference to this conclusion.
– There is almost certainly a significant energy barrier between the two structures.
– Might find domains of the two structures in samples.



α-In2Se2 Phonon Dispersion Curve
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β-In2Se2 Phonon Dispersion Curve
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Lattice Dynamics

• We find no imaginary phonon frequencies, other than a small pocket near Γ.

– Small pocket of instability: ubiquitous problem in first-principles calculations for
2D materials. Difficult to converge the flexural (ZA) branch.

– Isolated atomic crystals of hexagonal indium chalcogenides (both α and β phases)
are dynamically stable.

• The nonanalytic contribution to the dynamical matrix due to long-range Coulomb
interactions (longitudinal/transverse optic mode splitting) is neglected in this work.

• The PBE functional predicts softer phonons than the LDA.

• Infrared and Raman spectroscopy: zone-centre optic phonons allow experimental
classification of these materials.

– A normal mode is infrared active if it affects the dipole moment.
– A normal mode is Raman active if it affects the polarisability.



Analysis of Zone-Centre LDA Optical Phonons For α-In2X2

Γ-pt. freq. (cm−1) IR int. (D2Å−2amu−1) Raman
Branch

In2S2 In2Se2 In2Te2
Irrep.

In2S2 In2Se2 In2Te2 activity

4 40.6 35.6 30.7 E′′ – – – Ez ↔ E‖
5 40.6 35.6 30.7 E′′ – – – Ez ↔ E‖

6 135 107 85.4 A′1 – – –
{

E‖↔E‖
Ez↔Ez

7 262 178 146 E′′ – – – Ez ↔ E‖
8 262 178 146 E′′ – – – Ez ↔ E‖
9 (TO) 264 181 150 E′ 10.2 (E‖) 5.18 3.57 E‖ ↔ E‖
10 (LO) 264 181 150 E′ 10.2 (E‖) 5.18 3.57 E‖ ↔ E‖
11 (ZO) 282 199 162 A′′2 0.25 (Ez) 0.10 0.061 –

12 293 228 207 A′1 – – –
{

E‖↔E‖
Ez↔Ez

• Experimental resonant Raman frequencies of few-layer InSe: 115 cm−1 (A′1), 179
cm−1 (E′′), 187 cm−1 (A′′2), 201 cm−1 (A′′2), 212 cm−1 (E′) and 227 cm−1 (A′1).

• Experimental non-resonant Raman frequencies of few-layer InSe: 117 cm−1 (A′1),
179 cm−1 (E′′) and 227 cm−1 (A′1).



Analysis of Zone-Centre LDA Optical Phonons For β-In2X2

Γ-pt. freq. (cm−1) IR int. (D2Å−2amu−1) Raman
Branch

In2S2 In2Se2 In2Te2
Irrep.

In2S2 In2Se2 In2Te2 activity

4 40.8 35.8 31.2 Eg – – –

{
E‖↔E‖
E‖↔Ez

5 40.8 35.8 31.2 Eg – – –

{
E‖↔E‖
E‖↔Ez

6 134 106 84.9 A1g – – –
{

E‖↔E‖
Ez↔Ez

7 261 177 146 Eg – – –

{
E‖↔E‖
E‖↔Ez

8 261 177 146 Eg – – –

{
E‖↔E‖
E‖↔Ez

9 (TO) 262 180 149 Eu 10.4 (E‖) 5.4 3.8 –

10 (LO) 262 180 149 Eu 10.4 (E‖) 5.4 3.8 –

11 (ZO) 281 198 161 A2u 0.25 (Ez) 0.10 0.06 –

12 293 228 207 A1g – – –
{

E‖↔E‖
Ez↔Ez

• The frequencies are very similar in the two polytypes.

• Two modes are Raman-active in the α structure but not the β structure: means of
distinguishing the phases.



α-In2Se2 Band Structure
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• The LDA bands around the Fermi level are dominated by s- and p-type orbitals.

• Interband absorption selection rules:

– Photons polarised in-plane are absorbed by transitions between bands whose wave
functions have the same z → −z symmetry (even→even and odd→odd);

– Photons polarised along the z axis cause transitions between bands with opposite
symmetry (even→odd and odd→even).



In2X2 Electronic Band Structures

• In2S2, In2Se2 and In2Te2: indirect-gap semiconductors, with the valence-band
maximum (VBM) lying between Γ and K.

• The valence band has a saddle point on the Γ–M line.

– Lifshitz transition: when the hole concentration reaches the critical value where all
states are empty above the saddle point, the Fermi-surface topology changes.

– Carrier density at which Lifshitz transition takes place was found by integrating the
DFT density of states from the saddle point to the valence-band edge.

• Valence band near VBM can be fitted by an inverted-Mexican-
hat-shaped polynomial

EVB(k) =

3∑
i=0

a2ik
2i + a′6k

6 cos(6φ),

where φ is measured from the Γ–K line.



α-In2X2 Band Gaps, Spin-Splitting and Effective Masses (I)

Gap |∆EK
SO| (meV) Elec. eff. mass m∗/me nLifshitz

(eV) VB CB Γc Kc Mc
→Γc Mc

→Kc (1013 cm−2)
α-In2S2 2.53 18 79 0.26 0.86 1.24 0.42 8.32
α-In2Se2 2.16 92 23 0.20 0.71 2.30 0.33 6.00
α-In2Te2 2.00 13 47 0.17 0.53 0.64 0.23 8.14

• The conduction-band minimum (CBM) is at the Γ point in all cases except the LDA
band structure of α-In2Te2, where it is at the M point.

• There are local minima of the conduction band at Γ, K and M in each case, with the
exception of the PBE band structure of α-In2Te2.

• Experimental gap of few-layer InSe (from photoconductivity spectra): 1.4 eV.

– Not much higher than the measured gap of bulk InSe (1.2 eV).
– Differs from GaX, where the gap increases significantly in few-layer samples.
– Lower than monolayer DFT-LDA gap (1.68 eV)!
– Possibilities: difference between few-layer and monolayer In2X2 gaps; large excitonic

effects; few-layered sample contained a different structure.



α-In2X2 and β-In2X2 Electronic Band Structures

• β-In2X2 is also an indirect gap
semiconductor.

– The valence band is inverted-
Mexican-hat-shaped around Γ,
with the maximum on the Γ–K
line and a saddle point on the Γ–
M line.

– The conduction band minimum is
at Γ.

– Behaviour of conduction band at
K and M is different, however.
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• β-In2X2 gaps are smaller than α-In2X2 gaps by about 0.1 eV.

• Some of the bands exhibit spin splitting, including the highest valence (∆Ev,K
SO ) and

lowest conduction (∆Ec,K
SO ) bands near the K point.



In2Se2 Optical Absorption Spectra
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• Absorption shows a prominent peak (originating from the vicinity of the K point) at
3–5 eV, where the absorption coefficient of In2Se2 is similar to that of graphene.

– Ultrathin films of InX biased in vertical tunnelling transistors with graphene
electrodes could be used as an active element for the detection of UV photons.



Conclusions

• DFT indicates that the 2D hexagonal indium chalcogenides In2S2, In2Se2 and In2Te2

are dynamically stable, indirect-band-gap semiconductors with an unusual inverted-
Mexican-hat-shaped valence band.

• We have provided the phonon frequencies and Raman and IR activities of modes, to
assist the identification of these structures.

• Two possible structures (α and β) were investigated, which are very close in energy.

• Saddle points in the valence band along the Γ–M line lead to a Lifshitz transition in
the event of hole doping, for which we have calculated the critical carrier density.

• We have given a qualitative description of the optical absorption spectra, which
suggest that atomically thin films of indium chalcogenides could find application in
ultraviolet photon detectors.



To-Do (Where QMC Finally Gets a Mention)

• Study bulk InX and GaX, to understand stacking effects in the multilayer samples
that experimentalists are currently actually working with.

– Two polytypes for each layer: α and β. Can invert/reflect these to give α′ and β′.
– Two stacking arrangements for In2 or Ga2 dimers: AA and AB.
– The five AA-stacked structures: αα, αα′, αβ, ββ and ββ′.
– The six AB-stacked structures: αα, αα′, αβ, α′β, ββ and ββ′.
– Different exchange–correlation functionals and dispersion-correction schemes give

different relative energies on an energy scale of more than ∼ 0.02 eV per cell.
– Use QMC to identify the most stable structures.
– Problem: the In and Ga pseudopotentials from the CASINO library don’t work

at all in CASTEP and hence CASINO. Ghost states due to Kleinman–Bylander
representation? Use DFT pseudopotentials?

– Determine the Raman/IR-active phonon modes to help the experimentalists.

• Use DMC to investigate the quasiparticle gaps and exciton binding energies.

– DMC and GW0 studies of hexagonal BN indicate that the latter underestimates
the quasiparticle gap by more than 1.5 eV (and G0W0 is even worse).
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