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It’s a long, long way...

Classical (rigid,
unpolarisable): Bernal-
Fowler, SPC, TIPnP, etc:
1933 onwards...

Classical (flexible,
polarisable): Kollman, Dang-
Chang, Ponder, Xantheas:
AMOEBA, TTMn-F: 1990
onwards...

Ab initio-based: Clementi,
Jordan, Szalewicz...: 1976
onwards...

DFT: Parrinello, Car, Sprik,
Tuckerman, Galli and many
others:1992 onwards...

Quantum nuclear corrections
with path integrals:
Manolopoulos, Car...

After 80 years of

intensive effort by
1000’s of
researchers...

O-0 rdfs of bulk
liquid water: many
DFTs make water
over-structured,
with a very low
diffusion coefficient:
Schmidt et al. JPCB
2009. Top: BLYP,
Bottom: PBE,
compared with
experiment
(dashed)




Predicted density of water can be
30% too low with some
functionals (icebergs would sink!)
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Wang, Roman-Pérez, Soler, Artacho,
Fernandez-Serra, J. Chem. Phys. (2011)

Relative energies of ice

structures: Santra, Alfé, Car,
Michaelides, Scheffler et al.,

PRL 2011

Transition pressures between ice
structures can be off by a factor 10




Parts of the energy

1st-order Coulomb interaction between unperturbed 2-body

electrostatics charge distributions of monomers

Polarisation 2nd-order electrostatics (NB: not just Many-body
dipolar polarisability)

Exchange-overlap Pauli repulsion of closed shells Mainly 2-body

Dispersion Non-local electron correlation Mainly 2-body

Monomer Bond stretch, bond-angle bend 1-body

deformation

The many-body expansion:
E 0.M=3SEV) + 3 EPap+ 3 Db+
i <] i<j<k

where EY (@i, ))=E (G, j)-EV({)-EY()) ,etc...

tot



Cost and limitations of going beyond DFT

* Quantum Chemistry methods (MOLPRO code)
— MP2 (N%)
— CCSD(T) (N7, molecules and small clusters. Accuracy:
within 1 meV of exact for water dimer.
* Quantum Monte Carlo (CASINO code)
— Cost is N3 (same as DFT, but with a big prefactor)
— Molecules and extended systems
— Metals and insulators
— Efficient use of large parallel machines



World leading facility |
(~ 100K -1 M cores) |

National facility |
(~ 10K-100K cores)

Local facility
(~ 100-5K cores)

Computers

PC ( ~ 4-32 cores) -

10 100 1000
System size (Number of atoms)



QMC scaling on JaguarPF (Cray XT6,
300,000 cores at ONRL)
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The water monomer

The deformation energy of the H,O molecule as
function of bond lengths and bond angle is known
essentially exactly from quantum chemistry

Some DFTs (e.g. PBE,
BLYP) give a very poor
description, but DMC is
very good
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Benchmark PS is H. Patridge and D. W. Schwenke JCP, 106, 4618 (1997)




The water dimer: DMC

Errors of total energy of H,O dimer for thermal sample of 198
configurations drawn from AMOEBA m.d. simulation of liquid
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The water dimer: GAP

I Correcting DFT with GAP (Csanyi et al.) I

Based on ideas of Bayesian learning from large databases of
energies and forces of system of atoms and molecules: see Bartok,

Payne, Kondor, Csanyi, PRL (2010)
1

For H,O dimer: 12 degrees of o error e
freedom: descriptor space 08 T BLYP+GAP error 4
consists of intra- and inter- = 06}

molecular distances (symmetry %

is important). £ 2

First GAP for difference g 0.2 1

between DFT and MP2/ S ol

AVTZ, second GAP for basis- &

set corrections and 02 ¢

CCSD(T)-MP2. 04 |m

Resulting DFT+GAP gives quasi- T 4 5 6 7

exact to within rms of ~ 1 meV. O-O distance (Angstrom)




The water hexamer:
four isomers
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DFT and QMC for ice structures
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Hexamer in thermal equilibrium

M.d. simulation with Fanourgakis-
Xantheas classical potential
(flexible polarisable): T = 200 K,
duration = 1 ns, configurations
taken every 10 ps.
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The nonamer in thermal equilibrium

M.d. simulation with Fanourgakis-
Xantheas classical potential
(flexible polarisable): T = 200 K,
duration = 1 ns, configurations
taken every 10 ps.
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Liquid water

Liquid water with BLYP-2:

0-0 distance (A)



The pentadecamer in thermal equilibrium
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Where are the errors in DFT functionals?

¢ There is no single answer — it depends on the DFT

¢ For BLYP, dominant errors are in 1-body and 2-body;
beyond-2-body error is not negligible, but it depends only
weakly on configuration. So using GAP to correct 1- and
2-body gives big improvement.

*» For PBE, dominant errors appear to be in 1-body and
beyond-2-body. So using GAP to correct 2-body is
unlikely to achieve much — we will test this
expectation.



Where so far? — Where next?

*» Must achieve overall description: clusters, crystal, liquid
% QMC succeeds where DFT fails

* Water: the subtle balance between 2-body and
beyond-2-body is crucial

*» Normal DFT fails, DFT+GAP is accurate for clusters,
crystal, liquid — with judicious choice of DFT

* The concept of “statistical benchmarking”: QMC for large
thermal samples used to test and calibrate other methods

» Will generalise to many other molecular systems: CH,, NH,
HF, H,O + CH, , H,O + HF =2 H;,0* + F-, ... -

Project made possible by large
allocation of time on JaguarPF
and Titan under INCITE
program




