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Goal is to understand properties of a wide variety of materials i

under pressure
Cerium Phase diagram

= Van der Waals interactions 1600

= |Localization vs delocalization 0

1200 A

= Kondo physics
= Charge transfer € oo
=  Chemical Reactions 01},
Xe isosurfaces o1 . - . Y :
P (GPa)
Elkin et al. PRB 84, 094120 (2011)
Localized d-orbital in FeO
Tkatchenko et al PRB 78, 045116 (2008) ey orbital with surrounding

oxygen ions
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Techniques to probe materials at extreme conditions ) fees,
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The Sandia Z Machine ) i,
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EOS poses a stringent challenge for calculations ) e,

LDA energy with QHA vs volume for Be

14

Calculate Be HCP-> BCC 2 }
phase transition pressure 0] HeP ¢
with LDA+QHA

What is sensitivity of
transition? 2|
= Make constant shift of E, (V) oL

Energy (eV)

12 14 16 18 20 22 24
Volume (bohr® / Be)

Tansition pressure changes
from 350 Gpa to 525 Gpa
with a 1 kcal/mol shift

Zero point energies were an
order of magnitude larger

Chemical Accuracy is not _
good enough! s

-15 -10 -5 0] 5 10 15 20
Error in BCC Energy (shift in meV)

HCP -> BCC Transition Pressure (Megabar)




DMC may allow required accuracy

[CASINO DMC (ADF QZ4P, dt—0) [this work]]
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QMCPACK — Massively Parallel QM C@JE.

= Quantum Monte Carlo code designed for massive parallelism
= Developed by J. Kim et al at Oak Ridge National Laboratory

=  Hybrid MPI / OpenMP parallelism
= Shared Memory on Nodes, Distributed between

= Can efficiently scale to more than 1,000,000 CPU cores
= CUDA port to GPUs with 15X speedup

Scaling on Jaguar_pf Scaling on Sequoia
o
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DMC is not as mature as DFT

= Calculations of condensed phases involve a variety of approximations
= Most approximations may be made arbitrarily small, but approaches to this are not
standardized

= Finite size effects
= One body effects -> DFT comparison or twist averaging
= Two body effects -> Extrapolation, KZK functional or MPC / Chiesa combination

= Fixed node errors
= Slater jastrow wavefunction, self healing, backflow, geminals, pfaffians, multideterminants

= Pseudopotentials
= Only valence electrons simulated because of computational cost
= |In which approximation should core and valence be separated
= Correction via all electron calculation or comparison with all electron DFT




Approximation methods can greatly affect results

= Case study on Si
= Total energies of diamond and beta-Sn phases calculated with DMC / LRDMC
= Quasiharmonic phonon corrections included
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Method Raw (GPa)  Corrected (GPa) (T = 300 K)
LDA 7.21 6.34

PBE 9.87 8.99

VMC 15.48 £+ 0.06 13.3+1.0
LRDMC 16.65 £ 0.15 145+ 1.0

DMC (Ref. 18) 19.0 £ 0.5 16.5+ 0.5

DMC (Ref. 13) 165+ 1.0 140+ 1.0
AFQMC (Ref. 20) 15.1+£0.3 12.6 £0.3

Expt. 10.0 — 12.5 10.0 — 12.5

Sorella et al. PRB 83, 075119
(2011)
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Test approximations on a suite of solids &=

Binding is different
= Far less effect from degenerate energy levels at highest energy states
= More effect from relative energy levels

Test should compare to easily measured experimental data
= high pressure calculations to derive properties of ambient phase

Previous calculations have required 1 year of time on NSF
machines for a single solid

Calculations performed on Cielo
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Pseudopotential Details )

= LDA pseudopotentials constructed with OPIUM

= Compared to either LAPW calculations with elk or LMTO calculations with
RSPT (Mattsson et al. JCP 128, 084714 (2008))

= Bulk modulus and equilibrium volume nearly same to minimize
corrections such as applied in Maezono et al. PRB 82, 184108 (2010)

LDA vs Spacing for zincblende (SiC)
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Convergence of technical parameter8) .

= Tests performed for moderate size supercell at 2 volumes
= Time step, b-spline spacing and twist averaging converged to within meV

®= Finite size convergence achieved when change to larger supercell
produced same energy shift in ambient and high pressure calculations

B-spline factor vs energies for VMC
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Convergence of technical parameter8) .

= Tests performed for moderate size supercell at 2 volumes
= Time step, b-spline spacing and twist averaging converged to within meV

®= Finite size convergence achieved when change to larger supercell
produced same energy shift in ambient and high pressure calculations

timestep convergence of DMC
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Convergence of technical parameter8) .

= Tests performed for moderate size supercell at 2 volumes
= Time step, b-spline spacing and twist averaging converged to within meV

®= Finite size convergence achieved when change to larger supercell

produced same energy shift in ambient and high pressure calculations
Convergence of DMC energy with Twist Averaging
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DMC

First ever extensive benchmarks of Quantum () i

Laboratories

Monte Carlo for condensed matter

= Fit Vinet form to E(V) and compare equilibrium volume (density) and bulk
modulus (compressibility) to experiment

450
400
350
300
250
200
150
100
50
0

Equilibrium Volume (bohr”3)

Be
diamond

50 100 150 200 250 300 350 400 450
Experiment

= Materials span a factor of 10 in
equilibrium volume
= Four types of bonding are included
= |onic
= Covalent
= Metallic
= Van der Waals
= Lattice Constants within ~0.9%
= This provides a new baseline
procedure for a QMC calculations

Mean error: -0.38 +/- 0.15

Mean absolute error: 2.28 +/- 0.15

RMS error: -0.697 +/- 0.066%

Mean absolute relative error: 1.79 +/- 0.07%
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First ever extensive benchmarks of Quantum
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Monte Carlo for condensed matter

= Fit Vinet form to E(V) and compare equilibrium volume (density) and bulk

modulus (compressibility) to experiment

1000 ————

100

10

Equilibrium Bulk Modulus (GPa)

diamond
Sic” BN |
BP
i Si Be ]
i LiF & Al '
LiCl
Li
K
rAr
10 100 1000
Experiment

Bulk modulus spans over 3 orders
of magnitude

This provides a new baseline
procedure for a QMC calculations

Mean error: -0.07 +/- 0.42

Mean absolute error: 3.53 +/- 0.42

RMS error: 0.62 +/- 0.44%

Mean absolute relative error: 4.49 +/- 0.44%



Compare to DFT functionals

= Compare to various

“good” DFT

functionals

= LDA

= PBE
AMO5
HSEsol
vdW-DF2
vdW-optB86b

= Non van der Waals
functionals yield
high quality results
on many materials
= But not noble gases

= van der Waals
functionals are
improving to wide
applicability

Percent Error
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Compare to DFT functionals

= Compare to various

Error in Calculated Equilibrium Bulk Modulus

i\
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Si Phase transition revisited:

Utilizing methodology from benchmark fares little better

= Use DFT based pseudopotential

= Extensive twist averaging for
Fermi surface

= Chiesa correction for kinetic
energy and MPC for potential

= Equilibrium properties are worse

than reported by other groups
= Equilibrium density 2% too small
= Bulk Modulus 5% too large

= Phase Transition pressure
= 17.8 GPa (5-7.8 GPa too large!)

Energy (eV)

QMC energy vs volume for Si
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Study simpler system to isolate errors: ) e
Be HCP -> BCC phase transition

=  Solid Be used in ICF

= High strength, low Z material, Low x-ray
absorption

= HCP at ambient temperature and pressure

= Phase transition to BCC at high pressure

= Simple but demanding computationally

6000 ——
sl l1quid i
4000 bec |

%3000 i

- L
2000 hcp —
1000 |

. | | | [
OO 100 200 300 400 500
P (GPa)

Benedict et al. PRB 79, 064106 (2009)




Study simpler system to isolate errors:

Be HCP -> BCC phase transition

Solid Be used in ICF

absorption

HCP at ambient temperature and pressure
Phase transition to BCC at high pressure
Simple but demanding computationally

Liquid w00f Liquid .
g 2 F - "-—Q—Q——_
2000 -/ g 100 9::-?9 B (bee)
« R
Q g 1200 "DD--D
2 PBbee) = mE o (hep)
= C
= 400 il
g R
2.4 1000 P _ _ Presssure (GPa) E
§ F T ;
= ST E
500 o (hep) Tl S
P v v L v v uns L vy \3
0 100 300 400

High strength, low Z material, Low x-ray
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Rober and Sollier. J. Phys. IV France 134, 257 (2006)




Study simpler system to isolate errors: ) e,
Be HCP -> BCC phase transition

= Equation of state is fit using Vinet form
= More crucial because values have statistical errors

= Casula t-move formalism employed for
pseudopotentials

= Phase transition occurs at > 635 GPa HCP Equilibrium Parameters

= Significantly higher than DFT result ~ 390 GPa QMC Exp
QMC energy vs volume for Be

o _ woewgwoumenss cla 1.569 +/-0.004  1.568

V, (angstrom”3) 7.746 +/- 0.078 8.117

Bulk Modulus (GPa) 124 +/- 2 116.8

GPa

Energy (eV)

0k

5 6 7 8 9 10

. Volume (angstromsl Be) _



Perform all electron calculation to ) i

Laboratories

eliminate oseudopotential errors

3

all electron —&—
2.5 pseudopotential & |

Energy (eV)

25 30 35 40 45 50 55 60 65 70
Volume (bohr® / Be)

QMC energy (all-electron vs pseudopotential) with QHA vs volume for HCP B¢ ® Jtilize hard pseudopotenual with 4

electrons in valence for calculation
of trial wavefunction

= Replace with 4/r for QMC

= All properties of HCP (ambient)
phase agree with experiment

= Phase transition pressure shifts to
418 GPa, more in line with that
inferred by shock experiments

HCP Equilibrium Parameters
All Electron QMC Exp

QMC
cl/a 1.569 +/- 0.004
V, (angstrom”3) 7.746 +/- 0.078
eeeeeesessessm UK Modulus (GPa) 124 +/- 2

1.569 +/- 0.004 1.568
8.123 +/- 0.006 8.117
115.7 +/- 1.5 116.8



Accuracy of all electron methodology holds g =,
for another light nuclei phase transition

Laboratories

= Calculate LiH transition from B1 to B2 phase

= Ambient (B1) phase in excellent B1 Equilibrium Parameters

agreement with experiment

QMC Exp
= Phase transition pressure 337 GPa :
, raftice Sonstant 4 74 +1-0.002 4.08
= DFT (LDA) calculations 308 Gpa (angstrom)
= Complements DAC experiments Bu”((g:f:)u'us 322+-04  33.1+/-03
which top out near 250 GPa
B 3.64 +-0.05  3.64 +/-0.05

1.0 1

—— Vinet EOS
® ref[1], corrected for

0.9+ new ruby scale in ref[18]

¢ O runi
_ v run2
08 A run3
< run4
X
X
A
@]

0.7 1 run 5
run 6 (low temperature)
run 7 (not used in fit)

run 8 (LiH+H2)

VIV,

0.6

0.5

0.4 1

T T T T T T
0 50 100 150 200 250
Pressure (GPa)

Lazicki et al. PRB, 85, 054103 (2012)
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Minimizing the pseudopotential approximation will ) e
have the largest impact on DMC calculations of solids

= Phase transitions under pressure provide sensitive test of DMC

= Calculations using high quality DFT pseudopotentials have mediocre
accuracy

= All electron calculations of Be and LiH give extremely accurate properties
for equilibrium phases

= All electron phase transition pressures agree with available experiments
and are comparable to best DFT based answers

= All electron calculations are not a feasible proposition for many
applications

= Reducing the pseudopotential approximation should be the highest
priority for the calculation of solids with DMC
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Moving to higher temperatures

= High pressure low temperature conditions are quite rare in
the universe

= Zero temperature behavior sets the foundation, but does not
constrain all of an equation of state

= Melt boundaries, isentropes, adiabats, critical points etc are
all of interest experimentally

= No general path for high temperature properties from DMC
= Combine with another method
" Free energy decomposition: F(V,T) = F (V) + F,(V,T) + F_(V,T)
= Thermodynamic integration
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Melt boundaries are particularly challenging @z

= Target recent discrepancies in melt curves under pressure

= Early DAC experiments may have encountered a variety of difficulties
= Where available, shock determinations of melting often suggest a much steeper melt curve
® Increased reactivity at high temperature and pressure can lead to chemical reactions that

lower melt curve
= Fast recrystallization caused by different absorption profiles of the solid and liquid can also

lead to lowered determination of melting profile

Ta melt curve Fe melt curve
Frrrrrrrrrrrrrrrrrrrrvrrrrrrvrvrvovey1rrvry ‘. ]
16000 i . EZ; ;’ ShOCk Data C l;i;mzozr;et; anvil cell }/’é ]
14000 - — Ref 6 F - @ Abiniti RS
| ——Ref. 7 S S B PR
12000 he . L - (22 = (14) Liquid 4 .'-"Qéo‘e“‘eggg 3
- ex-m, Ref. 8 . f(29) A (15) A '/{' e o ]
oc e -
Py = Dewaeleet al. = [ %) e 8i 1
10000 |- =3 - .
S = T ]
= sooo} oor - ‘;
6000 | ; .
4000 - ool T rmociaied mating ine
I f -~ fast recrystallization threshold
2000 . . L 2 L P Y [T T I U

R 200 300 400 e P a— P
Pressure (GPa) \K P}‘i"a’ New Fe DAC Melt cL
Old Ta DAC Melt curve Neéw Ta DAC Melt curve  Oid Fe DAC Melt curve
Klug, Physics. 3, 52 (2010
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Case Study: xenon melt transition UL

900

800

Closed shell insulator at ambient conditions

700

Under static compression
=  FCC -> HCP Phase transition
= |sostructural insulator to metal transition

600

500

400

Pressure (GPa)

300

= Hugoniot well characterized

200

Liquid phase may exhibit anomalous behavior 1oo:

= Very narrow temperature range at ambient pressure °s 6 7 & 9 10 11 12 13 14 15
Density (g/cm®)

= Potentially flat melt curve at moderate pressures
6000 . - , , _ Root et al. PRL 105, 085501 (2010)
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> / gasket

3000 | o4&

Pyrometer

Temperature (K)

a° DAC, Boehler et al. 2001
2000 | ° } DAC, Ross'ej al. 2005
'9 v Saija and Prestipino, 2005
Belonoshko et al. 2006

Medium —

a4 r e

1000 |+

diamond

Pressure (GPa) KIUg: PhySiCS- 3, 52 (2010)



Pseudopotential poses a particular challenge for (i) s
accurate DMC calculations

= Validated norm conserving Xe pseudopotentials not widely available

= D-states well removed from valence, but d-projector is crucial
= Increasing d-hybridization suggested as cause of flat melt line
= Ross et al. PRL 95. 257801 (2005)

FCC energies of LDA pseudopotentials for Xe

vasp PAW e
elk LAPW &
6 pseudopotential - d in valence v )
pseudopotential - d in core .
5 | pseudopotential with d projector - d in core . i
\ —~ 200 ' ' ' .
o
4 r o .
5 o 150 | .
< p
~ 3} = 100 |~ - R
> ?
~0.5eV/Xe__° 2 50 .
difference at <r o ol . . . 1
70GPa i 4 45 5 55 6 |
Lattice Constant (Angstrom)
0 = - o
4 4.5 5 5.5 6 6.5 7

Lattice Constant (Angstrom)



Fixed node approximation and DFT Functional h) e,

= FCC equation of state
= LDA - no long range correlation, but self interaction in low density regions
= AMO5 - subsystem based functional, van der Waals is completely absent

FCC energies of Xe using different methods

1.60 L] ) T ) T ) T

140 | .
_ DET AMO5 |

1.20 * DFT LDA

1.00 h

0.80

0.60

Energy (eV)

0.40
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0.00

_0.20 L 1 1 1 1 1 1
9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

Lattice constant (bohr)
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Fixed node approximation and DFT Functional ) e,

= FCC equation of state
= LDA - no long range correlation, but self interaction in low density regions
= AMO5 - subsystem based functional, van der Waals is completely absent
= DMC with nodes and pseudopotentials taken from above calculations
= Very small dependence on DFT trial wavefunction

FCC energies of Xe using different methods
1.60 . T .

1.40 -
1.20
1.00
0.80

0.60

Energy (eV)

0.40

0.20

0.00

_0.20 L 1 1 1 1 1 1
9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

Lattice constant (bohr)




Difficult to determine free energy directly: ) i
Determine relative free energy of phases within QMD

= Place solid and liquid in contact with each other
= Run at different temperatures or starting energies and watch phase boundary

= Relative heat capacities and enthalpy of melting determine range of phase
coexistence

« Melt at 5800 K
* Freeze at 5400 K
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Thermodynamic integration to map to DMC free energies ) e,

= Calculate the change in free energy between different ensembles
= There are two approaches, a one shot formula or a perturbation series

o n-1
AF=F,-F AF=2("/5) K
=—k,TInZ, +k,TInZ, "

=—kBT1nEe_ﬁU3 /Ee_ﬁu*l‘
A N {
_ -BW:-Uy) ,-BU; -pU,
= kBT1n2€ e /26 K‘2=<AU2>1—<AU>12
=—k,TIn(e™) i, =(AU") =3(AU), (AU*) +2(AU);
=  Comparison of the two approaches provides a rough idea of the rate of
convergence of the series

= Need to calculate energy differences from snapshots

34
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Trial wavefunctions used for QMC

= Use a real space representation of the wavefunction
= Plane waves require evaluation of each basis
element for every move
= 3D b-splines require only 64 evaluations
at each point
= Very large amounts of memory required :
96 GB / wavefunction

i

¢

(a)Uniform B-spline (b)Mixed basis

= Hybrid Representation
= Use coarse b-spline mesh in real space ,
= Radial spline near atoms g
= Wavefunctions reduced to 24 GB
= Conversion is expensive for large systems

= GPU port of wavefunction conversions
= Massive parallelism available
= Conversion Time reduced from 10 days on 16
CPU cores to 6 hours on 4 GPUs
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Thermodynamic integration in practice

00 T ¢ DT e .
004 f o N . QMC A * 10 snapshots taken from a solid QMD
r0 4 S 0 * e ! calculations with LDA functional
Dlere 4 o A * 2,1 + Free energy shift from exponential:
Qb o8 ] « -0.05947 +/- 0.00085 eV / Xe
1 2 3 4 5 6 7T 8 9 10 « Terms from the perturbation series

snapshot nurmber » 1storder: -0.05818 +/- 0.00067 eV/Xe
00083 T } reéidua%fdiffelrencel% ] e 2ndorder: -0.00158 +/- 0.00023 eV/Xe
§§§§ [ ] « 3" order: -0.00030 +/- 0.00012 eV/Xe
'%ogg ] i . - - { + Fast convergence leads to confidence in
0062 | 1 % t closeness of ensembles
-0.066 i
-0.068 :

1 2 3 4 5 6 7 8 9 10
snapshot number
36
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Two approaches to determine the shift of the melt line

= Determine the change in Gibbs free energy directly
AG"®

Is
DFT

= Approach from Sola and Alfe PRL 130, 078501 (2009)
= Some uncertainties in how to evaluate SSFT and Ap

AT, ~ AG = AF -VAp® /2K,

= Alternative is to work with Helmholtz free energy
= Calculate isotherm with DFT in each phase

F=—PdV —SIT —> dF=—deV+C
= Use pressure from two phase calculations to set relative shift between
phases within DFT
= Thermodynamic integration at multiple volumes allows for changes in

slope of free energy
37
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QMC correction on DFT melt line

Relative Helmholtz Free Energies from QMC

» No evidence for low melt line found o TR
b . 0.4 F " DFT Fit Solid -+~ |
y experiment o | . Ftlaug
. . ' it Liquid ==
» Shifts from DMC are a similar s of Common Tangent -~
magnitude as those found in the iron S o2 . 1
5 04 Ty, 1
paper 8 ol g i, ]
g 06 ‘\ T
i -08r \\\\ R 7
Melt line from various sources a6 ‘\ "~'~,::::;;.~,...‘..,,_
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Validation of method: Melting of aluminum

= Shock and DAC melt exhibit a consistent trend

= DFT (2 phase approximation) accurately reproduces melt curve
= Thermodynamic integration from DFT to QMC gives a shift of only 18 K !
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Conclusions )

= Diffusion Monte Carlo can accurately treat Xe under pressure
= Pseudopotential Approximation is small
= Fixed node approximation is likely a small error

= Accurate treatment of d-hybridization does not cause melt curve to flatten
= Relative energies from DFT within LDA appear to be accurate near 1 Mbar

= Errors in total energies from quantum MD calculations will increase
melting temperature

= Flat melting curve from DAC should be revisited



