White dwarf cooling: electron-phonon coupling and the metallization of solid helium

Bartomeu Monserrat

University of Cambridge

QMC in the Apuan Alps VIII 31 July 2013

Outline

White dwarf stars overview

Theoretical background Anharmonic energy

Phonon expectation values

Results

Conclusions

Outline

White dwarf stars overview

Theoretical background

Anharmonic energy Phonon expectation values

Results

Conclusions

Star formation

- Virial theorem: $K = -1/2 V_{\rm g}$.
- Energy expressions:

$$K \propto N k_{\rm B} T ~~ {\rm and} ~~ V_{\rm g} \propto - \frac{G M^2}{R}$$

 Temperature increases as the star gravitationally collapses.

Main sequence star

- Thermonuclear reactions: hydrogen burning.
- Gravitation balanced by nuclear reactions.
- ▶ Main sequence star (e.g. the Sun).

White dwarf formation

- Burning material exhausted.
- Gravitational contraction resumes.
- High density leads to degenerate electron gas (DEG).
- White dwarf star balanced by DEG.
- Complications: mass loss (red giant), further burning cycles, ...

White dwarf structure

- ► Degenerate core: He or C/O.
- Atmosphere: H, He and traces of other elements.
- Atmosphere represents $10^{-4} 10^{-2}$ of the total mass.
- Atmosphere stratification due to strong gravity.
- Weak energy sources: crystallization, ...
- Energy transport: conduction, radiation and convection.

White dwarf cooling

B. Monserrat – QMC Apuan Alps VIII – July 2013

White dwarf cooling

B. Monserrat – QMC Apuan Alps VIII – July 2013

White dwarf cooling: metallization of solid helium (I)

Helium phase diagram 10^{2} Metallization He⁺⁺ 10^{1} Pressure (TPa) 10^{0} Solid ⁴He He⁺ 10⁻¹ He^{0} Fluid ⁴He 10⁻² 10^{2} 10^{3} 10^{4} 10⁵ 10^{6} Temperature (K)

B. Monserrat – QMC Apuan Alps VIII – July 2013 10/43

White dwarf cooling: metallization of solid helium (II)

Metallization pressure

- DFT: 17 TPa at zero temperature.
- ▶ DMC and *GW*: 25.7 TPa at zero temperature.
- Electron-phonon coupling: ?

Outline

White dwarf stars overview

Theoretical background Anharmonic energy Phonon expectation values

Results

Conclusions

B. Monserrat - QMC Apuan Alps VIII - July 2013

Harmonic approximation

• Vibrational Hamiltonian in $\{\mathbf{r}_{\alpha}\}$ (or $\{\mathbf{u}_{\alpha}\}$):

$$\hat{H}_{\text{vib}} = -\frac{1}{2} \sum_{\mathbf{R}_p,\alpha} \frac{1}{m_\alpha} \nabla_{p\alpha}^2 + \frac{1}{2} \sum_{\mathbf{R}_p,\alpha;\mathbf{R}_{p'},\beta} \mathbf{u}_{p\alpha} \mathbf{\Phi}_{p\alpha;p'\beta} \mathbf{u}_{p'\beta}$$

• Normal mode analysis: $\{\mathbf{u}_{p\alpha}\} \longrightarrow \{q_{\mathbf{k}s}\}$

$$u_{p\alpha;i} = \frac{1}{\sqrt{N_0 m_\alpha}} \sum_{\mathbf{k},s} q_{\mathbf{k}s} e^{i\mathbf{k}\cdot\mathbf{R}_p} w_{\mathbf{k}s;i\alpha}$$
$$q_{\mathbf{k}s} = \frac{1}{\sqrt{N_0}} \sum_{\mathbf{R}_p,\alpha,i} \sqrt{m_\alpha} u_{p\alpha;i} e^{-i\mathbf{k}\cdot\mathbf{R}_p} w_{-\mathbf{k}s;i\alpha}$$

Vibrational Hamiltonian in {q_{ks}}:

$$\hat{H}_{\rm vib} = \sum_{\mathbf{k},s} \left(-\frac{1}{2} \frac{\partial^2}{\partial q_{\mathbf{k}s}^2} + \frac{1}{2} \omega_{\mathbf{k}s}^2 q_{\mathbf{k}s}^2 \right)$$

Principal axes approximation to the BO energy surface

$$V(\{q_{\mathbf{k}s}\}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s},q_{\mathbf{k}'s'}) + \cdots$$

- Static lattice DFT total energy
- DFT total energy along frozen independent phonon
- DFT total energy along frozen coupled phonons

Vibrational self-consistent field equations

Phonon Schrödinger equation:

$$\left(\sum_{\mathbf{k},s} -\frac{1}{2} \frac{\partial^2}{\partial q_{\mathbf{k}s}^2} + V(\{q_{\mathbf{k}s}\})\right) \Phi(\{q_{\mathbf{k}s}\}) = E\Phi(\{q_{\mathbf{k}s}\})$$

- Ground state ansatz: $\Phi(\{q_{\mathbf{k}s}\}) = \prod_{\mathbf{k},s} \phi_{\mathbf{k}s}(q_{\mathbf{k}s})$
- Self-consistent equations:

$$\left(-\frac{1}{2} \frac{\partial^2}{\partial q_{\mathbf{k}s}^2} + \overline{V}_{\mathbf{k}s}(q_{\mathbf{k}s}) \right) \phi_{\mathbf{k}s}(q_{\mathbf{k}s}) = \lambda_{\mathbf{k}s} \phi_{\mathbf{k}s}(q_{\mathbf{k}s})$$
$$\overline{V}_{\mathbf{k}s}(q_{\mathbf{k}s}) = \left\langle \prod_{\mathbf{k}',s'} \phi_{\mathbf{k}'s'}(q_{\mathbf{k}'s'}) \right| V(\{q_{\mathbf{k}''s''}\}) \left| \prod_{\mathbf{k}',s'} \phi_{\mathbf{k}'s'}(q_{\mathbf{k}'s'}) \right\rangle$$

Vibrational self-consistent field equations (II)

Approximate vibrational excited states:

$$|\Phi^{\mathbf{S}}(\mathbf{Q})\rangle = \prod_{\mathbf{k},s} |\phi_{\mathbf{k}s}^{S_{\mathbf{k}s}}(q_{\mathbf{k}s})\rangle$$

where S is a vector with elements S_{ks} .

Anharmonic free energy:

$$F = -\frac{1}{\beta} \ln \sum_{\mathbf{S}} e^{-\beta E_{\mathbf{S}}}$$

Diamond independent phonon term (I)

$$V(\{q_{\mathbf{k}s}\}) = V(0) + \sum_{\mathbf{k},s} \frac{V_{\mathbf{k}s}(q_{\mathbf{k}s})}{V_{\mathbf{k}s}(q_{\mathbf{k}s})} + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s},q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat - QMC Apuan Alps VIII - July 2013

Diamond independent phonon term (II)

B. Monserrat – QMC Apuan Alps VIII – July 2013

Diamond coupled phonons term

$$V(\{q_{\mathbf{k}s}\}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s}, q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat – QMC Apuan Alps VIII – July 2013

LiH independent phonon term (I)

$$V(\{q_{\mathbf{k}s}\}) = V(0) + \sum_{\mathbf{k},s} \frac{V_{\mathbf{k}s}(q_{\mathbf{k}s})}{V_{\mathbf{k}s}(q_{\mathbf{k}s})} + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s},q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat - QMC Apuan Alps VIII - July 2013

LiH independent phonon term (II)

LiH coupled phonons term

$$V(\{q_{\mathbf{k}s}\}) = V(0) + \sum_{\mathbf{k},s} V_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} V_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s},q_{\mathbf{k}'s'}) + \cdots$$

B. Monserrat – QMC Apuan Alps VIII – July 2013

Anharmonic ZPE correction

B. Monserrat – QMC Apuan Alps VIII – July 2013

General phonon expectation value

• Phonon expectation value at inverse temperature β :

$$\langle \hat{O}(\mathbf{Q}) \rangle_{\Phi,\beta} = \frac{1}{\mathcal{Z}} \sum_{\mathbf{S}} \langle \Phi^{\mathbf{S}}(\mathbf{Q}) | \hat{O}(\mathbf{Q}) | \Phi^{\mathbf{S}}(\mathbf{Q}) \rangle e^{-\beta E_{\mathbf{S}}}$$

Evaluation:

Standard theories (Allen-Heine, Grüneisen):

$$\hat{O}(\mathbf{Q}) = \hat{O}(\mathbf{0}) + \sum_{\mathbf{k},s} a_{\mathbf{k}s} q_{\mathbf{k}s}^2$$

Principal axes expansion:

$$\hat{O}(\mathbf{Q}) = \hat{O}(\mathbf{0}) + \sum_{\mathbf{k},s} \hat{O}_{\mathbf{k}s}(q_{\mathbf{k}s}) + \frac{1}{2} \sum_{\mathbf{k},s} \sum_{\mathbf{k}',s'} \hat{O}_{\mathbf{k}s;\mathbf{k}'s'}(q_{\mathbf{k}s},q_{\mathbf{k}'s'}) + \cdots$$

Monte Carlo sampling

Band gap renormalization

- ▶ Band gap problem (LDA, PBE, ...): underestimation of gaps.
- Caused by the lack of a discontinuity in approximate xc-functionals with respect to particle number: correction Δ_{xc} to band gap.
- Approximate systematic shift in *all* displaced configurations.
- Error disappears in *change* in band gap.

Diamond thermal band gap (I)

Diamond thermal band gap (II)

Diamond thermal band gap (III)

Experimental data from Proc. R. Soc. London, Ser. A 277, 312 (1964)

Thermal expansion (I)

Gibbs free energy:

$$\mathrm{d}G = \mathrm{d}F_{\mathrm{el}} + \mathrm{d}F_{\mathrm{vib}} - \Omega \sum_{i,j} \sigma_{ij}^{\mathrm{ext}} \mathrm{d}\epsilon_{ij}$$

Vibrational stress:

$$\mathrm{d}F_{\mathrm{vib}} = -\Omega \sum_{i,j} \sigma_{ij}^{\mathrm{vib}} \mathrm{d}\epsilon_{ij}$$

Effective stress:

$$\mathrm{d}G = \mathrm{d}F_{\mathrm{el}} - \Omega \sum_{i,j} \sigma_{ij}^{\mathrm{eff}} \mathrm{d}\epsilon_{ij}$$

where $\sigma_{ij}^{\text{eff}} = \sigma_{ij}^{\text{ext}} + \sigma_{ij}^{\text{vib}}$.

Thermal expansion (II)

Potential part of vibrational stress tensor:

$$\sigma_{ij}^{\rm vib,V} = \langle \Phi(\mathbf{Q}) | \sigma_{ij}^{\rm el} | \Phi(\mathbf{Q}) \rangle$$

Kinetic part of vibrational stress tensor:

$$\sigma_{ij}^{\text{vib,T}} = -\frac{1}{\Omega} \left\langle \Phi \left| \sum_{\mathbf{R}_p,\alpha} m_\alpha \dot{u}_{p\alpha;i} \dot{u}_{p\alpha;j} \right| \Phi \right\rangle$$

Total vibrational stress tensor:

$$\sigma_{ij}^{\rm vib} = \sigma_{ij}^{\rm vib,V} + \sigma_{ij}^{\rm vib,T}$$

B. Monserrat - QMC Apuan Alps VIII - July 2013

LiH and LiD thermal expansion coefficient

Experimental data from J. Phys. C 15, 6321 (1982)

Outline

White dwarf stars overview

Theoretical background Anharmonic energy

Phonon expectation values

Results

Conclusions

Solid helium structural phase diagram

Solid helium electron-phonon gap correction (I)

Solid helium electron-phonon gap correction (II)

Solid helium equilibrium density

Solid helium metallization pressure

DMC and GW from PRL 101, 106407 (2008)

Helium phase diagram revisited

White dwarf cooling revisited: metallization of solid helium

Outline

White dwarf stars overview

Theoretical background Anharmonic energy Phonon expectation value

Results

Conclusions

Conclusions

- Theory for anharmonic vibrational energy of solids.
- General framework for phonon-dependent expectation values.
- Metallization of solid helium.
- White dwarf energy transport and cooling.

- Acknowledgements:
 - Prof. Richard J. Needs
 - Dr Neil D. Drummond
 - Dr Gareth J. Conduit
 - Prof. Chris J. Pickard
 - TCM group
 - EPSRC
- References:
 - B. Monserrat, N.D. Drummond, R.J. Needs Physical Review B 87, 144302 (2013)
 - B. Monserrat, N.D. Drummond, C.J. Pickard, R.J. Needs Helium paper, in preparation (2013)