Quantum Monte Carlo for Materials Design

Tim Mueller

Johns Hopkins University

Supported by INCITE

Increasing demand for resources

The Materials Genome Initiative

Use information technology to accelerate the development of advanced materials

- Develop database of properties for all materials
- Make available data and tools for data analysis

A database of material formation energies (and eventually formation free energies) would allow researchers to predict whether a hypothetical new material will be thermodynamically stable.

 Material designer dreams up new material for some technology.
 Calculated material properties look promising.

 Material designer dreams up new material for some technology.
 Calculated material properties look promising. 2. Designer runs QMC on hypothetical material and checks stability against database of known free energies.

 Material designer dreams up new material for some technology.
 Calculated material properties look promising. 2. Designer runs QMC on hypothetical material and checks stability against database of known free energies.

3. Designer determines whether it is worth synthesizing the material, and under what conditions it might be synthesized.

The values in this database only need to be calculated once, and they can be re-used for a very long time.

We lack experimental data on many materials

Number of materials

More than 100,000 entries in Inorganic Crystal Structure Database

> Less than 2000 crystal enthalpies of formation in NIST-JANAF and Kubachewski tables

Existing online data and tools – typically created using DFT

http://gurka.fysik.uu.se/ESP/

http://www.materialsproject.org

DFT gets many energies wrong, including oxidation energies

L. Wang et al., Phys. Rev. **B.** 73 (2006) 195107

Correcting for oxygen exposes other problems

No experimental data on regions of chemical space

Projected Performance Development

Lists

Performance increases will come from parallelism

John Shalf et al., SciDAC Review, Fall 2009

QMC is the best available method for building a database of formation energies

• Scales well with number of processors

OMC is the best available method for building a database of formation energies

- Scales well with number of processors
- Scales well with system size O(N) when calculating formation energies per atom

QMC is the best available method for building a database of formation energies

- Scales well with number of processors
- Scales well with system size O(N) when calculating formation energies per atom
- Works for everything (molecules, metals, insulators, semiconductors...)

QMC is the best available method for building a database of formation energies

- Scales well with number of processors
- Scales well with system size O(N) when calculating formation energies per atom
- Works for everything (molecules, metals, insulators, semiconductors...)
- Accurate energies

OMC energies of solids

Literature				
CompoundQMCYearExperimentLi 1.09 ± 0.05 1989 1.65 1.57 ± 0.01 1996 Na 1.14 ± 0.01 2008 1.11 1.0221 ± 0.0003 2003 Mg 1.51 ± 0.01 2008 1.52 Al 3.23 ± 0.08 2002 3.43 MgH ₂ 6.84 ± 0.01 2008 6.83 BN 12.85 ± 0.09 1997 12.9 C (diamond) 7.346 ± 0.006 2003 7.37 Si 4.62 ± 0.01 2004 4.62 Ge 3.85 ± 0.10 1995 3.86 GaAs 4.9 ± 0.2 1996 6.7 MnO 9.29 ± 0.04 2010 9.5 FeO 9.66 ± 0.04 2008 9.7 NiO 9.442 ± 0.002 2003 9.5 BaTiO ₃ 31.2 ± 0.3 2007 31.57 Jindřich Kolorenč and Lubos Mitas, Rep. Prog. Phys 74 (2011) 025602				

For high-throughput QMC, need a "recipe"

Iha	raci	np
		PC

Plane waves							
Pros	 Natural basis for periodic systems Used by many software packages Single-parameter convergence 						
Cons	 Non-local, which can be expensive in real space. 						
	<section-header></section-header>						

The recipe		Plane waves						
Basis set	Pros	 Natural basis for periodic systems Used by many software packages Single-parameter convergence 						
	Cons	 Non-local, which can be expensive in real space. 						
	Blips (splines)							
	Pros	Can represent any basisLocal						
	Cons	 Require a lot of memory and disk space 						

The recipe								
	Norm-conserving pseudopotentials							
Basis set Pseudopotentials	ABINIT (FHI)	 Covers most of periodic table Mostly large-core (soft) 						
	Rappe	 An alternative to ABINIT Only available for select elements 						

The recipe	Eric Shirley	and Richard Martin, Phys. Rev. B 57 (1993) 15413						
Basis set	Core-polarization correction							
	Material	Oxidation energy improvement*						
Pseudopotentials	CaO	48 kJ / mol O						
	SnO	-1 kJ / mol O						
	SnO ₂	9 kJ / mol O						
	GeO ₂	3 kJ / mol O						
	*After corre	cting for O ₂ energy error						

The recipe
Basis set
Pseudopotentials
Finite-size effects
Jastrow factor

- Initialize parameters with converged parameters from smaller unit cell
- All k-points use same Jastrow factor.
- Three-body terms not included they only help a little, and made
 VMC parameter optimization more difficult.

The recipe
Basis set
Pseudopotentials
Finite-size effects
Jastrow factor
Zero-point energies

• Use DFT (PAW / VASP) to calculate zero-point energies.

The recipe
Basis set
Pseudopotentials
Finite-size effects
Jastrow factor
Zero-point energies
Software

Software					
DFT	Quantum ESPRESSO				
QMC	CASINO				
Phonons	VASP PHONOPY				
Workflow	Custom scripts				

Results: DFT Errors

DMC Results

DMC Results

Where the problems are

(6)	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Ho	Er	Tm	Yb	Lu
(7)	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

DMC Results

A new Zn pseudopotential based on Cd pseudopotential

Small-core Zn pseudopotential

Best for Zn: ABINIT (FHI) pseudopotential

ABINIT F pseudopotential worked better as well

VASP / PAW is better than QE / NCPP

Close-up view of errors

The plan

- 1) Develop "recipe" for reliable QMC formation energies.
- 2) Generate benchmark data for important materials (e.g. each element in each common oxidation state).
- 3) Long term: Calculate them all.

The energies we calculated took an average of about 50,000 CPU-hours per material.

Projected Performance Development

Lists

The plan

By 2016-ish, we should be able to calculate QMC energies for every known inorganic material on a single supercomputer in about a week (roughly).

Getting QMC ready for high-throughput

- Better pseudopotentials
- Simplified workflow.
- User-friendly features (e.g. stop if convergence criterion is met, even if all steps haven't been run).
- Accuracy improvements.

Discussion