

Outline

- Graphene properties and applications
- Method
- Results
- Summary

Graphene

- zero band-gap semiconductor
- linear dispersion for electrons (holes) in the conduction (valence) bands.
- Fermi velocity roughly 10⁸ cm/s

Graphene layers

M. Terrones et al., Nano Today 5, 351-372 (2010)

Applications

Recent attractive issues

Modelling graphene devices interacting with other 2D materials

Fabrication of superconductors by graphene

Fabrication of upercapacitors by graphene

Binding energy ????

Binding energy(mev/atom) different Methods

Method	d(Å)	Basis	Functional	k-point	E_b
Graphite					
ACFD_RPA ^a	3.34	PW		$14\ 14\ 14$	62
$ACFDT_RPA^b$	3.34	PW	GGA_PBE	$10\ 10\ 5$	48
vdW_DF^c	3.6	PW	$_{\rm rev_PBE}$	2 2 2	45.5
QMC^{d}	3.426	Gaussian		2 2 2	56
Collapsed carbon nanotube e	3.35				35
Self-retraction f	3.6				31
Graphene					
vdW-DF (AB) ^g	3.4	PW	PBE	24 36 1	29.3
DFT-D (AB) g	"	"	PBE-D	"	50.6
$vdW-DFT(AA)^g$	"	PW	PBE	"	18.9
DFT-D (AA) g	"	"	PBE-D	"	19.5

- [a]. T. Olsen and K. S. Thygesen, Phys. Rev. B 87, 075111 (2013).
- [b]. S. Lebegue et al., Phys. Rev. Lett. 105, 196401 (2010).
- [c]. S. D. Chakarova-Kack et al., Phys. Rev. Lett. 96, 146107 (2006).
- [d]. L. Spanu et al., Phys. Rev. Lett. 103, 196401 (2009).
- [e]. L.X. Benedict et al., Chem. Phys. Lett. 286, 490 (1998).
- [f]. Z. Liu et al., Phys. Rev. B 85, 205418 (2012).
- [g]. I.V. Lebedeva et al., Phys. Chem. Chem. Phys. 13, 5687 (2011).

Method

- Dirac-Fock pseudopotentials
- DFT calculations for initial single particle wave functions
- VMC and DMC including Jastrow factors
- 3×3 , 4×4 , 5×5 , 6×6 and 9×9 unit cells

Method

- Twist average to consider more k vectors
- DMC extrapolation to zero time-step
- Exterapolation to infinite system size¹

$$E(N) = E(\infty) + bN^{(-5/4)}$$

Fitting parameter defined by fitting to QMC

Ground-state energy for monolayer

Ground-state energy for bilayer no twist average

Core vibration effect negligible

Monolayer zero energy: 0.0126 a.u./prim.cell

Bilayer zero energy: 0.0252 a.u./prim.cell

Share in BE: 10⁻⁶ a.u./prim.cell

Binding energy of bilayer

DFT calculations

1. I. V. Lebedeva et al., Phys. Chem. Chem. Phys. 13, 5687-5695 (2011).

Compare results

1. I. V. Lebedeva et al., Phys. Chem. Chem. Phys. 13, 5687-5695 (2011).

Summary

- Finite size error is a main limitation
- Not clear evidence if K vector offset is required for BE
- Binding energy of AB-stack larger (more stable) than AA-stack
- QMC calculation for AB-stack (33 meV/atom) in agreement with DFT-vdW (29 meV/atom)
- QMC calculation for AA-stack (12 mev/atom)
 smaller than DFT_vdW (19 mev/atom)

Summary

- Finite size error is a main limitation
- Not clear evidence if K vector offset is required for BE
- Binding energy of AB-stack larger (more stable) than AA-stack
- QMC calculation for AB-stack (33 meV/atom) in agreement with DFT-vdW (29 meV/atom)
- QMC calculation for AA-stack (12 mev/atom)
 smaller than DFT_vdW (19 mev/atom)

Future work

- Reducing finite size errors by calculations for larger simulation cells
- Defining precise interlayer distance of graphene layers
- Binding energy of trilayer graphene in equilibrium interlayer distance
- Binding energy of graphene with other materials regarding to devices

Acknowledgment

Dr. Neil D. Drummond

