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Introduction:

ultracold dipolar gases
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What are the ultracold quantum gases?

Cooling down an atomic ensamble

The first BEC: 1995

The first degenerate Fermi
gas: 1999.

Ground state of bosons and
fermions in harmonic potential at

T = 0

Densities: 1012 − 1015cm−3

Temperatures: 10nK

Atom numbers: 10− 106
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Why are the quantum gases interesting?

Ultracold atoms are clean and highly controllable systems:

tuning of scattering length, density, temperature, number of atoms

different dimensions: 1D, 2D, 3D

different spacial arrangments of atoms (square, triangular, honycomb lattices)

⇒ Possibility to study model hamiltonians for different condensed-matter

theories:

Bardeen-Cooper-Schrieffer theory of superconductivity

Hubbard model

ferromagnetism

etc ...
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Contact and dipolar interactions

Atoms without a dipole moment: the s-wave scattering is a dominant
process

Contact interaction potential: Ucont(r) = 4π~2a
m δ(r)

Reviews: Rev. Mod. Phys. 74, 463, 1999 (bosons), Rev. Mod. Phys. 80, 1215, 2008

(fermions).

Atoms with a dipole moment: not only the s-wave scattering

Udd(r) = Ucont + d2

r3 (1− 3 cos2 θ), characteristic length: r0 = md2

~2

Reviews: Rep. Prog. Phys. 72, 126401, 2009 (bosons), Chem. Rev. 112, 5012, 2012

(fermions).
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Experimental realization of dipolar
quantum gases

Atoms with large magnetic moment
I Bosons: 52Cr (d = 0.054D), 168Er (d = 0.065D), 164Dy (d = 0.093D)

I Fermions: 53Cr, 161Dy

Phys. Rev. Lett. 108, 210401, 2012; Phys. Rev. Lett. 107, 190401, 2011; Phys. Rev. Lett. 108, 215301, 2012

Heteronuclear polar molecules
I Bosons: 41K87Rb (d = 0.56D), 87Rb133Cs

I Fermions: 40K87Rb, 23Na40K (d = 2.7D), 6Li133Cs (d = 5.5D)

Science 327, 853, 2010; Nature 464, 1324, 2010; Phys. Rev. Lett. 109, 085301, 2012.

Two-dimensional geometry supresses the chemical reaction rate for 40K87Rb
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The model:

2D dipolar fermions
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The model

Ĥ = ~2

2m

∑N
i=1 ∆i + d2

∑
j<k

1
|rj−rk|3

Dipole moments are aligned perpendicular to the plane of motion by
an external field.

Purely repulsive 1/r3 interaction.

Purely two-dimensional system.

The goal is to investigate phase diagram at T = 0 by means of FNDMC.
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Possible phases

Fermi liquid phase
Elementary excitations of interacting fermions are described by almost
independent fermionic quasiparticles with the effective mass

Wigner crystal
Triangular crystal which appears at large density (contrary to the Coulomb
interaction case)

Stripe phase (stationary density modulations)
2D dipolar Fermi gas
Stripe phase is predicted to appear at kF r0 ≈ 1.5− 6 based on different
mean-field approaches.
2D homogeneous electron gas

I Microemulsion phases (stripes and bubbles) are predicted to appear
between FL and WC (Spivak and Kivelson, PRB 70, 155114, 2004.)

I QMC study (Clark and Ceperley, PRL, 2009 ) did not find a
microemulsion phase
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Details of FNDMC calculations.
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Trial wave function

ΨT (r1, . . . , rN) = ∆SΨJ

Jastrow: ΨJ =
∏N

j<k f (|rj − rk|),
for r < R̄ it is the s-wave solution of a two-body
scattering problem,

for r > R̄ f (r) ∼ exp(−const/r).
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Slater determinant:

Fermi liquid phase ∆S = det[e ıqirj ]
qi = 2π/L(nx , ny ) are PBC wave vectors in a square box

Wigner crystal phase ∆S = det[e−α(ri−Rm)2
]

Rm are the lattice points of the triangular lattice, α is the variational parameter.

Stripe phase (pattern of equaly spaced 1D stripes along y -direction)

∆S = det[e ikαxxi−ξ(yi−ym)2
]

ym denotes the y coordinate of the m-th stripe,
kαx = 2πnαx/Lx are the PBC wave vectors in the x-direction,

ξ is a variational parameter.
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Two-dimensional pair-distribution function
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Finite size errors

Potential energy

Summation in real space over all replicas of the simulation box:

Vdd = 1
2

∑
nx ,ny

(∑N
i=1

∑N
j=1

d2

|ri−(rj+nL)|3

)
.

Simpler formula:

〈V 〉 = Σ + Etail,

Σ denotes Vdd calculated with the constarin |ri − rj − R| ≤ Lcut ,
Etail (m)

N = 1
2

∫∞
mLx

d2

r3 g(r)2πr dr .

Kinetic energy

Shell errors for a noninteracting Fermi gas: ∆TN = TTH − TN

Shell errors for a Fermi liquid: m
m∗

∆TN

No shell errors for a Wigner crystal

Negligible shell errors for 1D stripes
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Finite size scaling: Fermi liquid and Wigner crystal phases

Fermi liquid phase
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→ we can extract the effective mass
of a quasiparticle

Twist-averaged boundary conditions
(TABC) give the same E as PBC

Wigner crystal phase
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Finite size scaling: stripe phase

The overall density is fixed

The square simulation box

The simulations are performed for 25 (5× 5), 49 (7× 7) and 81
(9× 9) particles (we need an odd number of particles per stripe in
order to have filled 1D shells)

→ The linear dependence of the energy on the number of particles:
EN = E + c

N
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Main results.
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The equation of state and quantum phase transition
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Red circles: EFL

Green triangles: EWC

Inset, blue circles: EWC − EFL

Inset, black circles:EST − EFL

Red line: Epe

Purple solid line: Ecl

At weak interaction we find good agreement with
Epe = EHF + (NεF /8)(kF r0)2 log(1.43kF r0) from
Lu and Shlyapnikov (2012)

At strong interaction the WC energy approaches

the energy of a purely classical crystal (purple

dashed line) corrected by the zero-point motion

of phonons from C. Mora et al (2007):

Ecl = N εF
2

kF r0
4

(
1.597 + 2.871√

kF r0

)
.

Quantum phase transition between FL
and WC happens at kF r0 = 25(3).

The region of phase coexistence is
very small δkF r0 ≈ 0.01.

The stripe phase is never energetically
favorable.
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Pair-distribution function

g(r) = 1
n2 〈Ψ̂+(~s)Ψ̂+(~s +~r)Ψ̂(~s +~r)Ψ̂(~s)〉
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The short-range repulsion increases by increasing the interaction strength.
The shell structure starts to appear on approaching the freezing density.

The existence of long-range ordering can be seen from the oscillating

behaviour of g(r) at large r .
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Static structure factor

S(k) = 1 + n
∫
dre ik·r[g(r)− 1]

NS(k) = 〈ρkρ−k〉 = 〈
∑

i ,j e
ik·(ri−rj )〉
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The direct estimator exhibits a more pronounced peak compared to the
smoother Fourier transform.

This peak appears at the wave vector corresponding to the lowest non-zero
reciprocal lattice vector of the triangular lattice.
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Effective mass and renormalization factor
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Perturbatively calculated effective mass:
Lu and Shlyapnikov, (2012)

(
m∗
m

)pe = 1/(1 +
4

3π
kF r0 + 0.25(kF r0)2 ln(0.65kF r0)).

Effective mass extracted from the fit of FNDMC energy:

EN = ETL +
m

m∗
∆TPBC

N +
a

N

There is no dependence of momentum distribution on number of particles.
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Main results

The phase diagram of a 2D single-component homogeneous dipolar
Fermi gas at T = 0 was investigated by means of FNDMC.

The important characteristics of Fermi liquid such as the effective
mass of quasiparticles and the renormalization factor were found.

Quantum phase transition between Fermi liquid and Wigner crystal
phase occurs at kF r0 = 25(3).

Stripe phase is never energetically favorable.

The extention of this work:
”The impurity problem in a bilayer system of dipoles”, arXiv:1306.5588v1.
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Thank you for your attention!.

Recent review on QMC study of ultracold gases:
L. Pollet, Rep. Prog. Phys. 75, 094501, 2012.
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Optimization of DMC parameters: time step and number
of walkers

Dependence of DMC energy on the time step dt.
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Stripe phase: optimization of the stripe separation

The distance between two stripes a = |ym+1 − ym|

The overall density in the simulation box with area S = Lx × Ly is
fixed

The distance a is changed when the ratio ρ = Lx/Ly changes

 0.61

 0.615

 0.62

 0.625

 0.63

 0.635

 0.64

 0.645

 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2  1.25

E
/E

H
F

a/asq

→ The optimal value is a = asq, where asq is the stripe separation for a
square box.
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Momentum distribution
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FL: the discontinuity of n(k) at k = kF decreases with the increase of kF r0,
but always stays finite

WC: n(k) does not have a discontinuity

Momentum distribution does not depend on the system size
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