QMC study of bi-layer electron-hole system

Ryo Maezono,¹ Pablo Lopez Rios,² Tetsuo Ogawa,³ and R.J. Needs²

¹School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan ² TCM Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom ³Department of Physics, Osaka University, Machikaneyama-machi 1-1, Toyonaka, Osaka 560-0043, Japan (Detail Lang 15, 2012)

(Dated: June 15, 2012)

Phys. Rev. Lett., accepted (2013).

Ryo Maezono

rmaezono@mac.com

School of Information Science,

Semi Conductor Bilayer

(Thermalization time~ 1ns)/(Lifetime~ Several μ s)

 $d \sim 4$ -5nm ~ 100 a.u. e.g., AlAs/GaAs

- $m_h/m_e \sim 0.50$ (heavier hole) ~ 0.09 (lighter hole)
 - S. Yang, PRB 81, 115320(2010).

L.V. Butov et al., PRL73, 304(1994).

^rExciton formation_J

Motivation

for Electron-Hole systems

DMC methodological

As a case with evaluations other than GS energy.

• Foundation of Photonics \rightarrow electronics \rightarrow photonics

Identifying where EH pairs stably exist.

Foundation of Solid state Physics

Electron Gas; Exchange and Correlation 'Exciton' '2-comp. plasma' Elec.-Hole Gas; Localization v.s. Delocalization Binding Screening

Laser & Semiconductors providing tractable experiments for Mott Tr.

Particle Density controlled by Laser Intensity

Two Component Plasma in 3d-EH gas

Mott Criterion

 $r_{S}^{cr.} = 4 \left(\frac{12}{\pi}\right)^{\frac{2}{3}} = 9.8$

Mott

(Exciton Bohr rad.) = (Screening length)

Keldish's droplet Keldish/68

Mean-field Th. Unstable Phase Brinkman-Rice/73

Correlation Methods Recover toward stability Vashista et.al./73 Higher Diagram, STLS etc.

Realistic Materials more Stable Combescot-Nozieres/72 Anisotropy, Multi-Valley...

Motivation

for Electron-Hole systems

DMC methodological challenge

As a case with evaluations other than GS energy.

Analysis using Density Matrices, Pair Correlation Functions...

Firstly establishing implementations

for such a system that definitely shows the transition

R. Maezono et.al., Phys. Rev. Lett., accepted (2013).

Model Bilayer

- $\cdot (d, r_s)$ -plane Phase Diagram
- $m_h/m_e = 1.0$; Mass ratio fixed in the present study

Phase Diagram

... as predicted

Bi-exciton captured

R. Maezono et.al., Phys. Rev. Lett., accepted (2013).

Previous Studies

Analytic Approaches

BCS-type WF, mainly by Mean-field approached

- Yu. E. Lozovik et.al., Lett. 22, 274 (1975).
- Xuejun Zhu, P. B. Littlewood, S. Hybersten, and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995).
- P. B. Littlewood and Xuejun Zhu, Phys. Scr. T68, 56 (1996).
- Y. E. Lozovik and O. L. Berman, Phys. Scr. 55, 491 (1997).

Difficult to describe global feature of Phase Diagram (as a matter of course)

Excitonic phase predicted stable at all the region

not able to reproduce 2C-Plasma at (d \rightarrow large)

Study by QMC

Good at for Global Phase Diagram

 \rightarrow Intermediate Regions about many-body correlations

Numerical Variational Approach

VMC & DMC

- 1) Phase Boundary identification Order parameter via Density Matrices
- 2) Internal spatial structure inside each phase

Pair Correlation Functions

De Palo's prev. Results

G. Senatore Group, PRL 88, 206401 ('02)

Successfully Described 2C plasma/Excitonic Phase Boundary

Our works

Order Parameter/Pair Correlation Function analysis

using Single Wave Function scheme

 \rightarrow Successfully captured Biexcitonic phase.

Multi WaveFunc. Scheme

Phase Boundary as Intersection (conventional)

SWF doesn't use 'energy intersection identification' for phase Boundary

Single WF scheme

possible to get Variational advantage, but

 $E[\Psi_{Normal}] > E[\Psi_{Pairing}]$ no such identification possible.

 \rightarrow Require direct evaluation of Order Parameter

to identify the Phase Boundary

Single WF scheme

Phase Boundary by Order parameters

• Make use of Backflow Tr.

Distinction between trial WFs becomes unclear when BF is used.

Exciton Mott Transition details/ possibility of cross-over

Strong Scaling on K

Hydrogen atom on graphene sheet

Scalability

Improved by replacing MPI_SEND --> MPI_ISEND

Results

Global survey(1)

• Only for (PW and Poly)/VMC/N=116 (no PPW, Wigner...)

--> To get reference values, first of all.

Multi WaveFunc. Scheme

SWF doesn't use 'energy intersection identification' for phase Boundary

• Only for (PW and Poly)/VMC/N=116 (no PPW, Wigner...)

--> To get reference values, first of all.

Global survey(4)

VMC Phase Boundary estimated by Fluid and Paring Trial WF.

Possibility of Wigner X'tal phase not taken into account here.

De Palo's work

• DMC value at (rs=1.0, d=0.0)

E = -0.417(4) De Palo *et.al.*, Phys. Rev. Lett. 88, 206401 (2002).

E = -0.4236 (1) Our result by Paring WF.

• No Paring at rs=1.0 ?

De Palo reports No Paring

while our DMC shows Paring at smaller distance.

Order Parameter

Condensate Fraction for Exciton formation

(normalized into [0,1])

Correlation between pairs located \vec{r} distance

Phase Correlation

between different snapshots

Two-body Density Matrix $\gamma_{eh}^{(2)}\left(\vec{r}_{e},\vec{r}_{h};\vec{r}_{e}+\vec{r},\vec{r}_{h}+\vec{r}\right) = N_{1}\left(N_{2}-\delta_{12}\right) \frac{\int \left|\Psi\left(\vec{R}\right)\right|^{2} \frac{\Psi\left(\vec{r}_{e}+\vec{r},\vec{r}_{h}+\vec{r},\cdots,\vec{r}_{N}\right)}{\Psi\left(\vec{r}_{e},\vec{r}_{h},\cdots,\vec{r}_{N}\right)} d\vec{r}_{3}\cdots d\vec{r}_{N}}{\int \left|\Psi\left(\vec{R}\right)\right|^{2} d\vec{R}}$

Measure How much Cancellation

Quantum Condensation

Two-body DM $\gamma_{2}(\vec{x}_{1},\vec{x}_{2};\vec{y}_{1},\vec{y}_{2}) = \frac{1}{2}\gamma_{1}(\vec{x}_{1},\vec{y}_{1})\gamma_{1}(\vec{x}_{2},\vec{y}_{2}) - \frac{1}{2}\gamma_{1}(\vec{x}_{1},\vec{y}_{2})\gamma_{1}(\vec{x}_{2},\vec{y}_{1}) + \frac{1}{2}\chi^{*}(\vec{y}_{2},\vec{x}_{2})\chi(\vec{y}_{1},\vec{x}_{1})$

 $\chi(\vec{x},\vec{x}') = \langle \Psi_0 | \psi(\vec{x}')\psi(\vec{x}) | \Psi_0 \rangle$ should be non-zero for Condensation

For Slater Det. Ψ , it vanishes and then γ_2 is decoupled by $\gamma_1 \rightarrow$ No Condensation

Quantum Condensation requires many-body description beyond Slater Determinant

Density Matrix Sampling

many-body WF form

One-body DM : $\gamma^{(1)}(\vec{r_1}; \vec{r_1}') = N_1 \frac{\int \Psi^*(\vec{r_1}, \vec{r_2}, \dots, \vec{r_N}) \Psi(\vec{r_1}', \vec{r_2}, \dots, \vec{r_N}) d\vec{r_2} \cdots d\vec{r_N}}{\int |\Psi(\vec{R})|^2 d\vec{R}}$ $= N_1 \frac{\int \left|\Psi\left(\vec{R}\right)\right|^2 \frac{\Psi\left(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N\right)}{\Psi\left(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N\right)} d\vec{r}_2 \cdots d\vec{r}_N}{\int \left|\Psi\left(\vec{R}\right)\right|^2 d\vec{R}}$ Two-body DM : $\gamma_{12}^{(2)}(\vec{r}_1, \vec{r}_2; \vec{r}_1', \vec{r}_2') = N_1 (N_2 - \delta_{12}) \frac{\int \Psi^*(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N) \Psi(\vec{r}_1', \vec{r}_2', \dots, \vec{r}_N) d\vec{r}_3 \cdots d\vec{r}_N}{\left[|\Psi(\vec{R})|^2 d\vec{R} \right]}$ $= N_1 (N_2 - \delta_{12}) \frac{\int |\Psi(\vec{R})|^2 \frac{\Psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)}{\Psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)} d\vec{r}_3 \cdots d\vec{r}_N}{\int |\Psi(\vec{R})|^2 d\vec{R}}$

Order parameter

Condensate Fraction of Exciton

occurs

Order Parameter

Revised on 13 Sep. 2012.

Dying-off behavior

Revised on 22 May. 2012.

Pair Correlation Functions

Biexciton Radius

Revised on 20 May. 2012.

Inter-Biexciton length

Revised on 18 May. 2012.

p.08