Generalized Local Density Approximation in One Dimension

Pierre-François Loos and Peter M. W. Gill

Research School of Chemistry, Australian National University, Canberra, Australia

QMC in the Apuan Alps VIII, Vallico Sotto, Tuscany 1st August 2013

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII - 1st August 2013 -

通 ト イヨ ト イヨト

Introduction	Uniform electron gases	Electrons on a ring	
0			
Acknowledgements			

My collaborator (and former boss)

Prof. Peter Gill

- Professor at ANU since 2004
- Nottingham (1999-2004)
- Cambridge (1996-1999)
- Massey University (1993-1996)
- Postdoc with Pople (1989-1993)

伺下 イヨト イヨト

Introduction	Uniform electron gases	Electrons on a ring	
00			
Local density approximation			

 <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PF Loos - http://rsc.anu.edu.au/~loos/ -

Introduction	Uniform electron gases	Electrons on a ring	
00			
Local density approximation			

Find the properties of the uniform electron gas (UEG) Ceperley & Alder, Phys Rev Lett 45 (1980) 566

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

(4 間) トイヨト イヨト

Introduction	Uniform electron gases	Electrons on a ring	
00			
Local density approximation			

- Find the properties of the uniform electron gas (UEG) Ceperley & Alder, Phys Rev Lett 45 (1980) 566
- Treat a molecular density as a collection of tiny bits of UEG Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200
 Perdew & Zunger, Phys Rev B 23 (1981) 5048
 Perdew & Wang, Phys Rev B 45 (1992) 13244

Introduction	Uniform electron gases	Electrons on a ring	
00			
Local density approximation			

- Find the properties of the uniform electron gas (UEG) Ceperley & Alder, Phys Rev Lett 45 (1980) 566
- Treat a molecular density as a collection of tiny bits of UEG Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200
 Perdew & Zunger, Phys Rev B 23 (1981) 5048
 Perdew & Wang, Phys Rev B 45 (1992) 13244
- © The LDA is an *ab initio* model with no adjustable parameters
- © This is an attractive approach to molecular electronic structure
- © It also forms a foundation for more accurate approximations

Introduction	Uniform electron gases	Electrons on a ring	
00			
Local density approximation			

- Find the properties of the uniform electron gas (UEG) Ceperley & Alder, Phys Rev Lett 45 (1980) 566
- Treat a molecular density as a collection of tiny bits of UEG Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200
 Perdew & Zunger, Phys Rev B 23 (1981) 5048
 Perdew & Wang, Phys Rev B 45 (1992) 13244
- © The LDA is an *ab initio* model with no adjustable parameters
- © This is an attractive approach to molecular electronic structure
- © It also forms a foundation for more accurate approximations
- ©© Not very accurate for correlation energy (overestimated by roughly 200%)

- 4 伊ト 4 ヨト 4 ヨト

	Generalized LDA	Uniform electron gases	Electrons on a ring	
	••			
Jacob's ladder				

 The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Generalized LDA	Uniform electron gases	Electrons on a ring	
	••			
Jacob's ladder				

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!

QMC in the Apuan Alps VIII - 1st August 2013 -

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Generalized LDA	Uniform electron gases	Electrons on a ring	
	•0			
Jacob's ladder				

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!
- We propose to follow an alternative route to heaven!

	Generalized LDA	Uniform electron gases	Electrons on a ring	
	•0			
Jacob's ladder				

- The lowest rung (LDA) assumes that all UEGs of density ρ are equivalent
- That assumption is not correct!
- We propose to follow an alternative route to heaven!
- We add a new local two-electron parameter η

	Generalized LDA	Uniform electron gases	Electrons on a ring	
	00			
The missing parameter				

Generalized LDA: Hole curvature

- Suppose that an electron is at the point **r**.
- The probability that another electron lies at a distance *u* is

$$P(u|\mathbf{r}) = \frac{\int \rho_2(\mathbf{r}, \mathbf{r} + \mathbf{u}) d\Omega_u}{\rho(\mathbf{r})}$$

where Ω_u is the angular part of u and $\rho_2(\mathbf{r}_1, \mathbf{r}_2)$ is the reduced 2nd-order density matrix

- $P''(0|\mathbf{r})$ indicates the width of the hole around the electron at \mathbf{r} .
- Therefore, the dimensionless curvature

$$\eta(\mathbf{r}) = r_s(\mathbf{r})^3 P''(0|\mathbf{r})$$

measures of the proximity of other electrons to an electron at r.

	Uniform electron gases	Electrons on a ring	
	0000		
Infinite uniform electron gas			

Infinite UEG

One of the most popular models in condensed matter physics

Parr & Yang, DFT for atoms and molecules (1989)

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

・ 戸 ト ・ ヨ ト ・ ヨ ト

	Uniform electron gases	Electrons on a ring	
	0000		
Infinite uniform electron gas			

Infinite UEG

One of the most popular models in condensed matter physics

The recipe:

Parr & Yang, DFT for atoms and molecules (1989)

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

通 ト イヨ ト イヨト

	Uniform electron gases	Electrons on a ring	
	0000		
Infinite uniform electron gas			

Infinite UEG

One of the most popular models in condensed matter physics

The recipe:

1 Put *n* electrons into a \mathcal{D} -dimensional cube of volume *V*

Parr & Yang, DFT for atoms and molecules (1989)

	Uniform electron gases	Electrons on a ring	
	0000		
Infinite uniform electron gas			

Infinite UEG

One of the most popular models in condensed matter physics

The recipe:
 Put *n* electrons into a *D*-dimensional cube of volume *V* Add a background positive charge to achieve neutrality

Parr & Yang, DFT for atoms and molecules (1989)

		Uniform electron gases	Electrons on a ring	
		0000		
Infinite uniform electron gas				

Infinite UEG

One of the most popular models in condensed matter physics

The recipe:

1 Put *n* electrons into a \mathcal{D} -dimensional cube of volume *V*

2 Add a background positive charge to achieve neutrality

3 Increase both *n* and *V* so that $\rho = n/V$ remains constant

Parr & Yang, DFT for atoms and molecules (1989)

	Uniform electron gases	Electrons on a ring	
	0000		
Infinite uniform electron gas			

Infinite UEG

One of the most popular models in condensed matter physics

The recipe:

1 Put *n* electrons into a \mathcal{D} -dimensional cube of volume V

- 2 Add a background positive charge to achieve neutrality
- **3** Increase both *n* and *V* so that $\rho = n/V$ remains constant
- **4** In the limit as $n \to \infty$ and $V \to \infty$, one obtains an infinite UEG

Parr & Yang, DFT for atoms and molecules (1989)

		Uniform electron gases	Electrons on a ring	
		0000		
Finite uniform electron gases				

Finite UEGs

One can also construct UEGs using a finite number of electrons

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

		Uniform electron gases	Electrons on a ring	
		0000		
Finite uniform electron gases				

Finite UEGs

One can also construct UEGs using a finite number of electrons

The recipe:

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

		Uniform electron gases	Electrons on a ring	
		0000		
Finite uniform electron gases				

Finite UEGs

One can also construct UEGs using a finite number of electrons

The recipe:

1 Put *n* electrons onto a \mathcal{D} -dimensional sphere

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII - 1st August 2013 -

	Uniform electron gases	Electrons on a ring	
	0000		
Finite uniform electron gases			

Finite UEGs

- One can also construct UEGs using a finite number of electrons
- The recipe:
 - **1** Put *n* electrons onto a \mathcal{D} -dimensional sphere
 - 2 Add a background positive charge to achieve neutrality if you wish

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

	Uniform electron gases	Electrons on a ring	
	0000		
Finite uniform electron gases			

Finite UEGs

- One can also construct UEGs using a finite number of electrons
- The recipe:
 - **1** Put *n* electrons onto a \mathcal{D} -dimensional sphere
 - 2 Add a background positive charge to achieve neutrality if you wish
- That's all

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

	Uniform electron gases	Electrons on a ring	
	0000		
Finite uniform electron gases			

Finite UEGs

One can also construct UEGs using a finite number of electrons

The recipe:

- **1** Put *n* electrons onto a \mathcal{D} -dimensional sphere
- 2 Add a background positive charge to achieve neutrality if you wish
- That's all

\bigcirc \bigcirc \bigcirc \bigcirc For $n \rightarrow \infty$, we get the infinite UEG!!

Loos & Gill, J Chem Phys 135 (2011) 214111 Gill & Loos, Theor Chem Acc 131 (2012) 1069

		Uniform electron gases	Electrons on a ring	
		0000		
Finite uniform electron gases				

A Few Finite UEGs

\mathcal{D}	System	Name
1	<i>n</i> electrons on a ring	<i>n</i> -ringium
2	n electrons on a sphere	<i>n</i> -spherium
3	<i>n</i> electrons on a glome	<i>n</i> -glomium
÷	÷	÷

PF Loos — http://rsc.anu.edu.au/~loos/ —

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

3

・ロト ・聞ト ・ヨト ・ヨト

		Uniform electron gases	Electrons on a ring	
		0000		
Finite uniform electron gases				

A Few Finite UEGs

\mathcal{D}	System	Name
1	<i>n</i> electrons on a ring	<i>n</i> -ringium
2	n electrons on a sphere	<i>n</i> -spherium
3	<i>n</i> electrons on a glome	<i>n</i> -glomium
÷	÷	÷

PF Loos — http://rsc.anu.edu.au/~loos/ —

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

3

ヘロト 人間ト 人間ト 人間ト

Ringium: "- One Ring to Rule Them All --"

Electrons on a Ring

Wavefunctions & Energies

$$\hat{H} = -\frac{1}{2R^2} \sum_{i=1}^{n} \frac{\partial^2}{\partial \theta_i^2} + \sum_{i
$$\varepsilon = ? \qquad \Psi = ?$$
$$r_s = \frac{1}{2\rho} = \frac{\pi R}{n}$$$$

Remarque: the electrons interact "through" the ring

イロト イポト イヨト イヨト

	Uniform electron gases	Electrons on a ring	

Peculiarities of 1D systems

Due to the singularity of the Coulomb interaction:

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

3

イロト イポト イヨト イヨト

	Uniform electron gases	Electrons on a ring	

Peculiarities of 1D systems

Due to the singularity of the Coulomb interaction:

Ψ has nodes when two electrons touch i.e. n! nodal cells Mitas, Phys Rev Lett 96 (2006) 240402

When $r_{12} \rightarrow 0$,

$$\Psi(r_{12}) = r_{12} \left(1 + \frac{r_{12}}{2}\right) + O(r_{12}^3)$$

Loos & Gill, Phys Rev Lett 108 (2012) 083002

	Uniform electron gases	Electrons on a ring	

Peculiarities of 1D systems

Due to the singularity of the Coulomb interaction:

Ψ has nodes when two electrons touch i.e. n! nodal cells Mitas, Phys Rev Lett 96 (2006) 240402

When $r_{12} \rightarrow 0$,

$$\Psi(r_{12}) = r_{12} \left(1 + \frac{r_{12}}{2}\right) + O(r_{12}^3)$$

Loos & Gill, Phys Rev Lett 108 (2012) 083002

- The system is spin-blind:
 - The divergence of the Coulomb operator mimics the Pauli principle
 - **Ferromagnetic and paramagnetic states are degenerate**
 - The fermonic and bosonic states are degenerate (Bose-Fermi mapping)

Lee & Drummond, *Phys Rev B* 83 (2011) 245114 Astrakharchik & Girardeau, *Phys Rev B* 83 (2011) 153303

A (10) A (10)

	Uniform electron gases	Electrons on a ring	
		0000000	
Hartree-Fock approximation			

Hartree-Fock approximation for *n*-ringium

PF Loos - http://rsc.anu.edu.au/~loos/ -

			Electrons on a ring	
			0000000	
Hartree-Fock approximation				

Hartree-Fock approximation for *n*-ringium

• The HF wave function and the η parameter are

$$\Phi_{\mathsf{HF}} = \prod_{i < j}^{n} r_{ij} \qquad \qquad \eta = \left(1 - \frac{1}{n^2}\right) \frac{\pi^2}{6}$$

PF Loos - http://rsc.anu.edu.au/~loos/ -

QMC in the Apuan Alps VIII — 1st August 2013 —

			Electrons on a ring	
			0000000	
Hartree-Fock approximation				

Hartree-Fock approximation for *n*-ringium

• The HF wave function and the η parameter are

$$\Phi_{\mathsf{HF}} = \prod_{i < j}^{n} r_{ij} \qquad \qquad \eta = \left(1 - \frac{1}{n^2}\right) \frac{\pi^2}{6}$$

The HF energy is

$$\varepsilon_{\mathsf{HF}} = \frac{n^2 - 1}{n^2} \frac{\pi^2}{24 \, r_s^2} + \frac{1}{4 \, r_s} \left(\sum_{k=1}^n \frac{4 - 1/n^2}{2k - 1} - 3 \right)$$

Loos & Gill, J Chem Phys 138 (2013) 164124

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII - 1st August 2013 -

< ロト < 同ト < ヨト <

	Uniform electron gases	Electrons on a ring	
		0000000	
Perturbation expansions			

1st weapon: Perturbation expansions

ペロト 《□ ト 《 □ ト 《 □ ト 《 □ ト 《 □ ト 《 □ ト 《 □ ト 《 □ ト 《 □ ト 《 □ ト ○ Q (C) QMC in the Apuan Alps VIII — 1st August 2013 —

PF Loos - http://rsc.anu.edu.au/~loos/ -

		Electrons on a ring	
		0000000	
Perturbation expansions			

1st weapon: Perturbation expansions

• We can find the high-density expansion coefficients (valid for $r_s \ll 1$)

$$\varepsilon_{\rm c} = \varepsilon_0 + \varepsilon_1 \, r_s + \dots$$

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

(4月) (4日) (4日)

		Electrons on a ring	
		0000000	
Perturbation expansions			

1st weapon: Perturbation expansions

• We can find the high-density expansion coefficients (valid for $r_s \ll 1$)

$$\varepsilon_{\rm c} = \varepsilon_0 + \varepsilon_1 r_s + \dots$$

• We can also find the low-density expansion coefficients (valid for $r_s \gg 1$)

$$\varepsilon_{\mathsf{c}} = \frac{\gamma_2}{r_{\mathsf{s}}} + \frac{\gamma_3}{r_{\mathsf{s}}^{3/2}} + \dots$$

Loos, J Chem Phys 138 (2013) 064108 Loos & Gill, J Chem Phys 138 (2013) 164124

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Uniform electron gases	Electrons on a ring	
		0000000	
Hylleraas calculations			

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

э

・ロト ・聞ト ・ヨト ・ヨト

	Uniform electron gases	Electrons on a ring	
		0000000	
Hylleraas calculations			

© Hylleraas-type calculations can be done for few electrons

 \bigcirc It works well for intermediate r_s

PF Loos - http://rsc.anu.edu.au/~loos/ -

・ 母 ト ・ ヨ ト ・ ヨ ト

	Uniform electron gases	Electrons on a ring	
		0000000	
Hylleraas calculations			

- © Hylleraas-type calculations can be done for few electrons
- \bigcirc It works well for intermediate r_s
- Observe the many-electron integrals are too numerous and too difficult for larger number of electrons

通 ト イヨ ト イヨト

	Uniform electron gases	Electrons on a ring	
		0000000	
Hylleraas calculations			

- © Hylleraas-type calculations can be done for few electrons
- \bigcirc It works well for intermediate r_s
- Observe the many-electron integrals are too numerous and too difficult for larger number of electrons
- So how can we calculate accurate energies for intermediate r_s?

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

PF Loos - http://rsc.anu.edu.au/~loos/ -

		Electrons on a ring	
		0000000	
Quantum Monte Carlo			

Diffusion Monte Carlo calculations offer a way forward

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- \odot These converge poorly in the small- r_s regime

PF Loos — http://rsc.anu.edu.au/~loos/ —

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII - 1st August 2013 -

・ 母 ト ・ ヨ ト ・ ヨ ト

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- \odot These converge poorly in the small- r_s regime
- These converge well in the medium-r_s regime

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

・ 戸 ト ・ ヨ ト ・ ヨ ト

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- \odot These converge poorly in the small- r_s regime
- © These converge well in the medium-r_s regime
- \odot These converge very well in the large- r_s regime

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- © These converge poorly in the small-r_s regime
- © These converge well in the medium-r_s regime
- \odot These converge very well in the large- r_s regime
 - Weaknesses?

通 ト イヨ ト イヨト

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- © These converge poorly in the small-r_s regime
- © These converge well in the medium-r_s regime
- \odot These converge very well in the large- r_s regime
 - Weaknesses?
 - 1 DMC energies have some (controllable) statistical noise

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- © These converge poorly in the small-r_s regime
- © These converge well in the medium-r_s regime
- \odot These converge very well in the large- r_s regime
 - Weaknesses?
 - 1 DMC energies have some (controllable) statistical noise
 - 2 Accurate DMC energies depend on accurate nodes

	Uniform electron gases	Electrons on a ring	
		0000000	
Quantum Monte Carlo			

- Diffusion Monte Carlo calculations offer a way forward
- © These converge poorly in the small-r_s regime
- © These converge well in the medium-r_s regime
- \odot These converge very well in the large- r_s regime
 - Weaknesses?
 - 1 DMC energies have some (controllable) statistical noise
 - 2 Accurate DMC energies depend on accurate nodes

©©© Fortunately, the HF nodes (*i.e.* $r_{ij} = 0$) are exact! Youpi!

$$\Psi_{\mathsf{Trial}}(\{r_{ij}\}) = \Psi_{\mathsf{HF}}(\{r_{ij}\}) \prod_{i < j}^{n} \left(\sum_{k} c_{k} r_{ij}^{k}\right)$$

			Electrons on a ring		
			00000000		
Exact solutions for 2-ringium					

<u>Just in case someone is interested</u>: Exact solutions for n = 2

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

3

イロト イポト イラト イラト

			Electrons on a ring		
			00000000		
Exact solutions for 2-ringium					

<u>Just in case someone is interested</u>: Exact solutions for n = 2

- The Schrödinger eqn is separable in extracule & intracule coordinates
- The extracule equation is trivial to solve
- The intracule equation is a Heun-type differential equation
- For certain "eigenradi" R, both ϵ and Ψ can be obtained in closed form

■ There are a countably infinite number of these closed-form solutions Loos & Gill, *Phys Rev Lett* 103 (2009) 123008; *ibid* 108 (2012) 083002

- 4 同 ト 4 回 ト 4 回 ト

			Electrons on a ring		
			00000000		
Exact solutions for 2-ringium					

Some exact solutions

State	R	ε	$\Psi(r_{12})$ $x = r_{12}/(2R)$
Ground	1/2	9/4	$r_{12}\sqrt{1+x}$
	$\sqrt{3/2}$	2/3	$r_{12} \left[1 + \frac{1}{2}r_{12}\right]$
	$\frac{1}{4}(\sqrt{33}+3)$	$\frac{25}{96}(7-\sqrt{33})$	$r_{12}\sqrt{1+x}\left[1+(R-\frac{1}{2})x\right]$
	$\sqrt{23/2}$	9/46	$r_{12}\left[1+\frac{1}{2}r_{12}+\frac{5}{2}x^{2}\right]$
	•		
1st excited	$\frac{1}{4}(\sqrt{33}-3)$	$\frac{25}{96}(7+\sqrt{33})$	$r_{12}\sqrt{1-x}\left[1+\left(R+\frac{1}{2}\right)x\right]$
	$\sqrt{5/2}$	9/10	$r_{12}\sqrt{1-x}\sqrt{1+x}\left[1+\frac{1}{2}r_{12}\right]$
	$\sqrt{33/2}$	8/33	$r_{12}\sqrt{1-x}\sqrt{1+x}\left[1+\frac{1}{2}r_{12}+\frac{7}{2}x^2\right]$
	•	-	

Loos & Gill Phys Rev Lett 108 (2012) 083002

PF Loos - http://rsc.anu.edu.au/~loos/ -

Generalized Local Density Approximation in One Dimension

QMC in the Apuan Alps VIII — 1st August 2013 —

イロト イポト イヨト イヨト

		Uniform electron gases	Electrons on a ring		
			00000000		
Reduced correlation energies					

Reduced correlation energies (mE_h) for *n*-ringium

Combining perturbation expansions, Hylleraas and DMC calculations leads to

		Seitz radius rs								
п	$6\eta/\pi^2$	0	0.1	0.2	0.5	1	2	5	10	20
2	3/4	13.212	12.985	12.766	12.152	11.250	9.802	7.111	4.938	3.122
3	8/9	18.484	18.107	17.747	16.755	15.346	13.179	9.369	6.427	4.030
4	15/16	21.174	20.698	20.249	19.027	17.324	14.762	10.390(0)	7.085(0)	4.425(0)
5	24/25	22.756	22.213	21.66(2)	20.33(1)	18.439(1)	15.644(2)	10.946(0)	7.439(0)	4.636(0)
6	35/36	23.775	23.184	22.63(2)	21.14(1)	19.137(1)	16.192(2)	11.285(0)	7.653(0)	4.762(0)
7	48/49	24.476	23.850	23.24(2)	21.70(1)	19.607(1)	16.554(2)	11.509(0)	7.795(0)	4.844(0)
8	63/64	24.981	24.328	23.69(3)	22.11(1)	19.940(1)	16.808(2)	11.664(0)	7.890(0)	4.901(0)
9	80/81	25.360	24.686	24.04(2)	22.39(1)	20.186(1)	16.995(3)	11.777(0)	7.960(0)	4.941(0)
10	99/100	25.651	24.960	24.25(4)	22.62(1)	20.373(1)	17.134(2)	11.857(0)	8.013(0)	4.973(0)
∞	1	27.416	26.597	25.91(1)	23.962(1)	21.444(0)	17.922(0)	12.318(0)	8.292(0)	5.133(0)

Lee & Drummond, Phys Rev B 83 (2011) 245114

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Uniform electron gases	Electrons on a ring	
		0000000	
Correlation functional			

QMC in the Apuan Alps VIII — 1st August 2013 —

3

PF Loos - http://rsc.anu.edu.au/~loos/ -

	Uniform electron gases	Electrons on a ring	
		0000000	
Correlation functional			

- We know the high-density and low-density expansions
- We should fit our results with functions that behave this way
- But which functions should we choose?

PF Loos - http://rsc.anu.edu.au/~loos/ -

QMC in the Apuan Alps VIII - 1st August 2013 -

通 ト イ ヨ ト イ ヨ ト

		Electrons on a ring	
		0000000	
Correlation functional			

- We know the high-density and low-density expansions
- We should fit our results with functions that behave this way
- But which functions should we choose?
 - "Robust" interpolation Cioslowski, J Chem Phys 136 (2012) 044109

PF Loos - http://rsc.anu.edu.au/~loos/ -

QMC in the Apuan Alps VIII - 1st August 2013 -

通 ト イ ヨ ト イ ヨ ト

	Uniform electron gases	Electrons on a ring	
		0000000	
Correlation functional			

- We know the high-density and low-density expansions
- We should fit our results with functions that behave this way
- But which functions should we choose?
 - "Robust" interpolation Cioslowski, J Chem Phys 136 (2012) 044109
 - Fitting based on hypergeometric functions (maybe related to the ISI functional of Seidl and Perdew) Seidl, Perdew & Kurth, Phys Rev Lett 84 (2000) 5070

	Uniform electron gases	Electrons on a ring	Conclusion
			•
Final remarks			

Take-home messages

How can we use these new UEG results?

• *n* electrons on a ring gives UEGs of any desired density ρ

- We have calculated their correlation energies very accurately
- Our results permit a generalization of the LDA for finite systems
- This improves the accuracy of the lowest rung of Jacob's Ladder
- Next, we will extend this approach to electrons in 2D and 3D