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Local density approximation

The Local Density Approximation (LDA) in DFT

Find the properties of the uniform electron gas (UEG)
Ceperley & Alder, Phys Rev Lett 45 (1980) 566

Treat a molecular density as a collection of tiny bits of UEG
Vosko, Wilk & Nusair, Can J Phys 58 (1980) 1200
Perdew & Zunger, Phys Rev B 23 (1981) 5048
Perdew & Wang, Phys Rev B 45 (1992) 13244

, The LDA is an ab initio model with no adjustable parameters

, This is an attractive approach to molecular electronic structure

, It also forms a foundation for more accurate approximations

// Not very accurate for correlation energy (overestimated by roughly 200%)
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Jacob’s ladder

Jacob’s ladder vs Generalized LDA idea

The lowest rung (LDA) assumes
that all UEGs of density ρ are
equivalent

That assumption is not correct!

We propose to follow an
alternative route to heaven!

We add a new local
two-electron parameter η
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The missing parameter

Generalized LDA: Hole curvature

Suppose that an electron is at the point r.

The probability that another electron lies at a distance u is

P(u|r) =

∫
ρ2(r, r + u)dΩu

ρ(r)

where Ωu is the angular part of u and ρ2(r1, r2) is the reduced 2nd-order
density matrix

P ′′(0|r) indicates the width of the hole around the electron at r.

Therefore, the dimensionless curvature

η(r) = rs(r)3P ′′(0|r)

measures of the proximity of other electrons to an electron at r.
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Infinite uniform electron gas

Uniform electron gases

Infinite UEG

One of the most popular models in condensed matter physics

The recipe:

1 Put n electrons into a D-dimensional cube of volume V
2 Add a background positive charge to achieve neutrality
3 Increase both n and V so that ρ = n/V remains constant
4 In the limit as n → ∞ and V → ∞, one obtains an infinite UEG

Parr & Yang, DFT for atoms and molecules (1989)
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Finite uniform electron gases

Uniform electron gases

Finite UEGs

One can also construct UEGs using a finite number of electrons

The recipe:

1 Put n electrons onto a D-dimensional sphere
2 Add a background positive charge to achieve neutrality if you wish

That’s all

,,, For n→∞, we get the infinite UEG!!

Loos & Gill, J Chem Phys 135 (2011) 214111
Gill & Loos, Theor Chem Acc 131 (2012) 1069
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Finite uniform electron gases

Uniform electron gases

A Few Finite UEGs

D System Name

1 n electrons on a ring n-ringium

2 n electrons on a sphere n-spherium

3 n electrons on a glome n-glomium

...
...

...
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Ringium: “— One Ring to Rule Them All —”

Electrons on a Ring Wavefunctions & Energies

Ĥ = − 1

2R2

n∑
i=1

∂2

∂θ2
i

+
n∑

i<j

1

rij

ε = ? Ψ = ?

rs =
1

2ρ
=
πR

n

Remarque: the electrons interact “through” the ring
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Peculiarities of 1D systems

Due to the singularity of the Coulomb interaction:

Ψ has nodes when two electrons touch i.e. n! nodal cells
Mitas, Phys Rev Lett 96 (2006) 240402

When r12 → 0,

Ψ(r12) = r12

(
1 +

r12

2

)
+ O(r 3

12)

Loos & Gill, Phys Rev Lett 108 (2012) 083002

The system is spin-blind:

The divergence of the Coulomb operator mimics the Pauli principle
Ferromagnetic and paramagnetic states are degenerate
The fermonic and bosonic states are degenerate (Bose-Fermi mapping)

Lee & Drummond, Phys Rev B 83 (2011) 245114
Astrakharchik & Girardeau, Phys Rev B 83 (2011) 153303
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Hartree-Fock approximation

Hartree-Fock approximation for n-ringium

The HF wave function and the η parameter are

ΦHF =
n∏

i<j

rij η =

(
1− 1

n2

)
π2

6

The HF energy is

εHF =
n2 − 1

n2

π2

24 r2
s

+
1

4 rs

(
n∑

k=1

4− 1/n2

2k − 1
− 3

)

Loos & Gill, J Chem Phys 138 (2013) 164124
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Perturbation expansions

1st weapon: Perturbation expansions

We can find the high-density expansion coefficients (valid for rs � 1)

εc = ε0 + ε1 rs + . . .

We can also find the low-density expansion coefficients (valid for
rs � 1)

εc =
γ2

rs
+

γ3

r
3/2
s

+ . . .

Loos, J Chem Phys 138 (2013) 064108

Loos & Gill, J Chem Phys 138 (2013) 164124
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Hylleraas calculations

2nd weapon: Hylleraas calculations

, Hylleraas-type calculations can be done for few electrons

, It works well for intermediate rs

/ However, the many-electron integrals are too numerous and too
difficult for larger number of electrons

So how can we calculate accurate energies for intermediate rs?
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Quantum Monte Carlo

3rd weapon: Quantum Monte Carlo

Diffusion Monte Carlo calculations offer a way forward

/ These converge poorly in the small-rs regime

, These converge well in the medium-rs regime

,, These converge very well in the large-rs regime

Weaknesses?

1 DMC energies have some (controllable) statistical noise
2 Accurate DMC energies depend on accurate nodes

,,, Fortunately, the HF nodes (i.e. rij = 0) are exact! Youpi!

ΨTrial({rij}) = ΨHF({rij})
n∏

i<j

(∑
k

ck r
k
ij

)
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Exact solutions for 2-ringium

Just in case someone is interested: Exact solutions for n = 2

The Schrödinger eqn is separable in extracule & intracule coordinates

The extracule equation is trivial to solve

The intracule equation is a Heun-type differential equation

For certain “eigenradi” R, both ε and Ψ can be obtained in closed
form

There are a countably infinite number of these closed-form solutions

Loos & Gill, Phys Rev Lett 103 (2009) 123008; ibid 108 (2012) 083002
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Exact solutions for 2-ringium

Some exact solutions

State R ε Ψ(r12) x = r12/(2R)

Ground 1/2 9/4 r12

√
1 + x√

3/2 2/3 r12

[
1 + 1

2 r12

]
1
4 (
√

33 + 3) 25
96 (7−

√
33) r12

√
1 + x

[
1 + (R − 1

2 )x
]√

23/2 9/46 r12

[
1 + 1

2 r12 + 5
2 x

2
]

.

.

.
.
.
.

.

.

.
.
.
.

1st excited 1
4 (
√

33− 3) 25
96 (7 +

√
33) r12

√
1− x

[
1 + (R + 1

2 )x
]√

5/2 9/10 r12

√
1− x

√
1 + x

[
1 + 1

2 r12

]√
33/2 8/33 r12

√
1− x

√
1 + x

[
1 + 1

2 r12 + 7
2 x

2
]

.

.

.
.
.
.

.

.

.
.
.
.

Loos & Gill Phys Rev Lett 108 (2012) 083002
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Reduced correlation energies

Reduced correlation energies (mEh) for n-ringium

Combining perturbation expansions, Hylleraas and DMC calculations leads to

Seitz radius rs

n 6η/π2 0 0.1 0.2 0.5 1 2 5 10 20

2 3/4 13.212 12.985 12.766 12.152 11.250 9.802 7.111 4.938 3.122

3 8/9 18.484 18.107 17.747 16.755 15.346 13.179 9.369 6.427 4.030

4 15/16 21.174 20.698 20.249 19.027 17.324 14.762 10.390(0) 7.085(0) 4.425(0)

5 24/25 22.756 22.213 21.66(2) 20.33(1) 18.439(1) 15.644(2) 10.946(0) 7.439(0) 4.636(0)

6 35/36 23.775 23.184 22.63(2) 21.14(1) 19.137(1) 16.192(2) 11.285(0) 7.653(0) 4.762(0)

7 48/49 24.476 23.850 23.24(2) 21.70(1) 19.607(1) 16.554(2) 11.509(0) 7.795(0) 4.844(0)

8 63/64 24.981 24.328 23.69(3) 22.11(1) 19.940(1) 16.808(2) 11.664(0) 7.890(0) 4.901(0)

9 80/81 25.360 24.686 24.04(2) 22.39(1) 20.186(1) 16.995(3) 11.777(0) 7.960(0) 4.941(0)

10 99/100 25.651 24.960 24.25(4) 22.62(1) 20.373(1) 17.134(2) 11.857(0) 8.013(0) 4.973(0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∞ 1 27.416 26.597 25.91(1) 23.962(1) 21.444(0) 17.922(0) 12.318(0) 8.292(0) 5.133(0)

Lee & Drummond, Phys Rev B 83 (2011) 245114
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Correlation functional

Fitting the results (under progress)

We know the high-density and low-density expansions

We should fit our results with functions that behave this way

But which functions should we choose?

1 “Robust” interpolation
Cioslowski, J Chem Phys 136 (2012) 044109

2 Fitting based on hypergeometric functions
(maybe related to the ISI functional of Seidl and Perdew)
Seidl, Perdew & Kurth, Phys Rev Lett 84 (2000) 5070
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Final remarks

Take-home messages

How can we use these new UEG results?

n electrons on a ring gives UEGs of any desired density ρ

We have calculated their correlation energies very accurately

Our results permit a generalization of the LDA for finite systems

This improves the accuracy of the lowest rung of Jacob’s Ladder

Next, we will extend this approach to electrons in 2D and 3D
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