Preaching on first principles views on chemical compound space: Atom centered potentials and statistical learning

O. Anatole von Lilienfeld

Institute of Physical Chemistry, Department of Chemistry, University of Basel, Switzerland Argonne Leadership Computing Facility, Argonne National Laboratory, Illinois, USA

``First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties'', O. A. von Lilienfeld, Int J Quant Chem (2013), http://arxiv.org/abs/1209.5033 If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words? If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words?

I believe it is the atomic hypothesis (or atomic fact, or whatever you wish to call it) that all things are made of atoms — little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence you will see an enormous amount of information about the world, if just a little imagination and thinking are applied.

Feynman Lectures of Physics (1964)

...

"One material every 2 s by 2016" (T. Mueller)

...

``One material every 2 s by 2016'' (T. Mueller)

``QMC can inform improvements of current DFTs (or other methods)" (M. Gillan, A. Tkatchenko, ...)

. . .

``One material every 2 s by 2016'' (T. Mueller)

``QMC can inform improvements of current DFTs (or other methods)" (M. Gillan, A. Tkatchenko, ...)

Increase DFT's transferability to properly account for

- spin states
- excited states
- van der Waals

. . .

"One material every 2 s by 2016" (T. Mueller)

``QMC can inform improvements of current DFTs (or other methods)" (M. Gillan, A. Tkatchenko, ...)

Increase DFT's transferability to properly account for

- spin states
- excited states
- van der Waals

Define transferability!

A method is called transferable if its error is invariant wrt changes in atomic configuration and composition == chemical compound space

<u>Combinatorial catastrophe</u> number of small organic molecules > 10⁶⁰ *Nature Insight* on chemical space (2004)

> Assume 1 property evaluation ~ 1 s \rightarrow exhaustive screening ~ 10⁵² yrs (age of universe ~10¹⁰ yrs)

Edisonian approach

1878

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

How many stoichiometries have $N_p = 40$ protons?

B₈

ScH₁₉

)₅

 H_{40}

Ca₂ Zr

ZnNe

How many stoichiometries have $N_p = 40$ protons?

Discrete number theory

- Integer partition of N_p
- Number of ways to write N_p as sum of positive integers
- He₂₀
 - Young-Ferrers diagrams

OAvL, Int J Quant Chem, (2013)

How many stoichiometries have $N_p = 40$ protons?

OAvL, Int J Quant Chem, (2013)

Combinatorial problem - availability heuristic?

OAvL, Int J Quant Chem, (2013)

<u>Combinatorial catastrophe</u> number of small organic molecules > 10⁶⁰ *Nature Insight* on chemical space (2004)

<u>Combinatorial catastrophe</u> number of small organic molecules > 10⁶⁰ *Nature Insight* on chemical space (2004)

> Assume 1 property evaluation ~ 1 s \rightarrow exhaustive screening ~ 10⁵² yrs (age of universe ~10¹⁰ yrs)

<u>New</u>

Franceschetti and Zunger, Nature (1999)

<u>Combinatorial catastrophe</u> number of small organic molecules > 10⁶⁰ *Nature Insight* on chemical space (2004)

> Assume 1 property evaluation ~ 1 s \rightarrow exhaustive screening ~ 10⁵² yrs (age of universe ~10¹⁰ yrs)

<u>New</u>

DFT & Surface Adsorption

Published Items in Each Year

<u>Combinatorial catastrophe</u> number of small organic molecules > 10⁶⁰ *Nature Insight* on chemical space (2004)

> Assume 1 property evaluation ~ 1 s \rightarrow exhaustive screening ~ 10⁵² yrs (age of universe ~10¹⁰ yrs)

<u>New</u>

DFT & Surface Adsorption

DFT & Surface Design

Right compound for right reason!

Franceschetti and Zunger, Nature (1999)

 $\min_{\{Z_I,\mathbf{R}_I\}} \sum_{i} \omega_i \left(P_i(\{Z_I,\mathbf{R}_I\}) - P_i^{\text{ref}} \right)^2$

Right compound for right reason!

Franceschetti and Zunger, Nature (1999)

- No analytic solution
- Ill-defined
- high dimensional
- expensive

 \rightarrow Iterative minimization

$$\min_{\{Z_I,\mathbf{R}_I\}} \sum_{i} \omega_i \left(P_i(\{Z_I,\mathbf{R}_I\}) - P_i^{\text{ref}} \right)^2$$

<u>1) Transferable:</u> First principles (QM, UFF)

2) Smart: Variational (dP/dX), Genetic, ...

3) Fast: Correlational (Machine Learning)

4) Muscle: Supercomputing & Data

First Principles
$$\frac{H(\{Z_I, \mathbf{R}_I\})\Psi(\mathbf{r}) = E\Psi(\mathbf{r})}{H(\{Z_I, \mathbf{R}_I\})} = -\sum_i \nabla_i^2 - \sum_{I,i} \frac{Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{I < J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$$

Fractional Z in QM

Constraints on the composition of the Earth's core from *ab initio* **calculations**

D. Alfè*, M. J. Gillan† & G. D. Price*

* Research School of Geological and Geophysical Sciences, Birkbeck College and University College London, Gower Street, London WC1E 6BT, UK † Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, UK

Knowledge of the composition of the Earth's core¹⁻³ is important for understanding its melting point and therefore the temperature at the inner-core boundary and the temperature profile of the core and mantle. In addition, the partitioning of light elements between solid and liquid, as the outer core freezes at the innercore boundary, is believed to drive compositional convection⁴, which in turn generates the Earth's magnetic field. It is generally

Nature (2000)

Variational: Gradients

Fractional N_e

$$\frac{\partial E[H]}{\partial N_e} = \mu_e = \epsilon$$

Mermin

<u>Fukui function:</u> Response of frontier orbitals to molecular changes

Conceptual DFT (Parr, Yang et al)

Parr

Variational: Gradients

Fractional N_e

$$\frac{\partial E[H]}{\partial N_e} = \mu_e = \epsilon$$

OAvL et al, Phys Rev Lett (2005)

Fractional Z_{I}

$$\frac{\partial E[H]}{\partial Z_I} = \left\langle \Psi \left| \frac{\partial H}{\partial Z_I} \right| \Psi \right\rangle = \int d\mathbf{r} \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} - \sum_J \frac{Z_J}{|\mathbf{R}_J - \mathbf{R}_I|}$$

Hellmann

Feynman

Weigend and Ahlrichs J Chem Phys (2004)

Yang & Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

Variational: Fractional nuclei

Tuckerman (NYU)

Weigend and Ahlrichs J Chem Phys (2004)

Yang & Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

Volcano for oxygen reduction reaction: Oxygen binding $E^{\text{bind}} = E(\text{Pd}_{79}) - E(\text{Pd}_{79}\text{-O}) - 0.5 E(\text{O}_2)$

Henkelman (UT) Sheppard (LANL)

How to dope?

D Sheppard, G Henkelman, OAvL, J Chem Phys (2010)

Volcano for oxygen reduction reaction: Oxygen binding $E^{\text{bind}} = E(\text{Pd}_{79}) - E(\text{Pd}_{79}\text{-O}) - 0.5 E(\text{O}_2)$

Henkelman (UT) Sheppard (LANL)

D Sheppard, G Henkelman, OAvL, J Chem Phys (2010)

Volcano for oxygen reduction reaction: Oxygen binding $E^{\text{bind}} = E(\text{Pd}_{79}) - E(\text{Pd}_{79}\text{-O}) - 0.5 E(\text{O}_2)$

1st order expansion for 10 doped mutants

$$\partial_{\lambda} E^{\text{bind}} = \sum_{I} \mu_{n,I}^{\text{bind}} \partial_{\lambda} Z_{I}(\lambda)$$

D Sheppard, G Henkelman, OAvL, J Chem Phys (2010)

Henkelman (UT) Sheppard (LANL)

Volcano for oxygen reduction reaction: Oxygen binding $E^{\text{bind}} = E(\text{Pd}_{79}) - E(\text{Pd}_{79}\text{-O}) - 0.5 E(\text{O}_{2})$

 $\mu_{n,I} = \partial E^{\text{bind}} / \partial Z_I$

Henkelman (UT) Sheppard (LANL)

D Sheppard, G Henkelman, OAvL, J Chem Phys (2010)

Adsorption

Henkelman (UT) Sheppard (LANL)

Target oxygen binding value: 1.65 eV

$$\min_{\{Z_I,\mathbf{R}_I\}} \left(P(\{Z_I,\mathbf{R}_I\}) - P^{\mathrm{ref}} \right)^2$$

Dan Sheppard, PhD thesis, UT Austin 2010

Adsorption

Dan Sheppard, PhD thesis, UT Austin 2010

Defects

Predicted changes for various N to O mutations (out of 32) Preliminary results from Moritz to Baben (group of Prof. Schneider, RWTH Aachen)

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
**Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

FIGURE 16.-NODDER'S PERIODIC TABLE

Quam & Quam, J Chem Educ (1934)

FIGURE 21.-EMERSON'S HELIX

Quam & Quam, J Chem Educ (1934)

FIGURE 21.-EMERSON'S HELIX

Design by Edgar Longman: original colour scheme restored by P.J Stewart, 2004.

Generalization $E(H(\lambda)) =$ $E(H_i + \lambda(H_f - H_i))$ N_e Z_i, N_{e_f} Z_f, N_{e_f} λ Z_f, N_{e_i}

 Z_i, N_{e_i}

Vertical changes: ``redox" Example: $Li \rightarrow Li^+ + e^-$

Horizontal changes:

Z(r)

iso-electronic & ``alchemical" Example: -All constitutional isomers

-hydrazine $(N_2H_4) \rightarrow CH_3OH$

-same number of valence electrons

Generalization

$$E(H(\lambda)) = E(H_i + \lambda(H_f - H_i))$$

$$\frac{\partial E[H]}{\partial \lambda} = \left\langle \Psi \left| \frac{\partial H(\lambda)}{\partial \lambda} \right| \Psi \right\rangle$$

$$= \int d\mathbf{r} \ n_\lambda(\mathbf{r}) \times [v_j^{ext}(\mathbf{r}) - v_i^{ext}(\mathbf{r})]$$

OAvL J Chem Phys (2009)

Generalization

OAvL, Int J Quant Chem, (2013)

$$\begin{array}{lcl} \partial_{\lambda}\epsilon(\lambda) & = & \frac{1}{\delta} \left(\int d\mathbf{r} [n_{\lambda}(\mathbf{r}) - n_{\lambda}^{+\delta}(\mathbf{r})] \times [v_{j}^{ext}(\mathbf{r}) - v_{i}^{ext}(\mathbf{r})] \right) \\ & \text{vs.} \\ d\epsilon(\lambda)/d\lambda & = & \frac{1}{\delta} \left(\epsilon(\lambda + \delta) - \epsilon(\lambda) \right) \\ \text{OAvL JCP} \\ (2009) \end{array}$$

But what about prediction?

ε[eV]

$$\begin{aligned} \epsilon_{\lambda=1} &\approx & \epsilon_{\lambda=0} + \left. \frac{\partial \epsilon}{\partial \lambda} \right|_{\lambda=0} \Delta \lambda + H.O.T. \\ & \Delta \lambda &= & 1 \end{aligned}$$

OAvL *JCP* (2009)

Prediction?

ε[eV]

$$egin{array}{lll} \epsilon_{\lambda=1} &pprox & \epsilon_{\lambda=0} + \left. rac{\partial \epsilon}{\partial \lambda}
ight|_{\lambda=0} \Delta \lambda + H.O.T. \ \Delta \lambda &= 1 \end{array}$$

OAvL *JCP* (2009)

Prediction?

ε[eV]

$$egin{array}{lll} \epsilon_{\lambda=1} &pprox & \epsilon_{\lambda=0} + \left. rac{\partial \epsilon}{\partial \lambda}
ight|_{\lambda=0} \Delta \lambda + H.O.T. \ \Delta \lambda &= 1 \end{array}$$

In analogy to: Smith and van Gunsteren *JCP* (1994)

$$egin{array}{rcl} E^{lin}&=&E_i+\lambda imes(E_f-E_i)\ &=&\langle H_i+f_{if}(\lambda) imes(H_f-H_i)]
angle_\lambda\ f_{if}(\lambda)&=&iggl\{ egin{array}{rcl} 0& ext{if}&\lambda=0\ 1& ext{if}&\lambda=1\ 1& ext{if}&\lambda=1\ f_{if}(\lambda)&=&a_{if}(\lambda^2-\lambda)+\lambda \end{array}$$

OAvL *JCP* (2009)

Prediction?

ε[eV]

$$egin{array}{lll} arepsilon_{\lambda=1} &pprox & arepsilon_{\lambda=0} + \left. rac{\partial arepsilon}{\partial \lambda}
ight|_{\lambda=0} \Delta \lambda + H.O.T. \ \Delta \lambda &= 1 \end{array}$$

In analogy to: Smith and van Gunsteren *JCP* (1994)

$$egin{array}{rcl} E^{lin}&=&E_i+\lambda imes(E_f-E_i)\ &=&\langle H_i+f_{if}(\lambda) imes(H_f-H_i)]
angle_\lambda\ f_{if}(\lambda)&=&iggl\{ egin{array}{ll} 0 & ext{if} & \lambda=0\ 1 & ext{if} & \lambda=1\ f_{if}(\lambda)&=&a_{if}(\lambda^2-\lambda)+\lambda \end{array}$$

Drug design?

 R_1

 R_2

 R_3

 R_4

 R_5

Ellipticine, intercalated between 2 Watson-Crick base-pairs w backbone, using vdW+DFT (GGA+DCACP) *J Phys Chem B* (2007)

OAvL, Int J Quant Chem (2013)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.4		1		with dE/α with ΔE	ef	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3			A	ref		-
R_{5} P_{5} R_{5} D_{-2} D_{-1} D_{0} D_{-2} D_{0} D_{-2} D_{0}	₩0.2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	-1			2	ī
e vs. group123456CHNSiHPCH_3NH_2OH ^{left} OH ^{right} FClCH_3NH_2OH ^{left} OH ^{right} FClCH_2NHOSiH_2PHS	N ₅		Δ_{c-p}	E ^{int} [kcal	/mol]		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	e vs. group	1	2	3	4	5	6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		СН	N			-	-
CH ₂ NH O SiH ₂ PH S		CH ₃	NH ₂		OH ^{right}	F	Cl
		CH ₃	NH ₂	OH ^{left}	OH ^{right}	F	Cl
CH ₃ NH ₂ OH ^{left} OH ^{right} F Cl		CH ₂	NH	Ŭ		PH	S
		CH ₃	NH ₂	OH ^{left}	OH ^{right}	F	Cl

Prediction? System dependent derivatives???

Help!

WANTED! Jacob's Ladder for CCS

 $Help! \rightarrow Swarm Intelligence$

Erdős problems Throughout his career, Erdős would offer US\$ prizes for solutions to unresolved problems. http://wikipedia.org

Win a prize!!!

ε[eV]

www.alcf.anl.gov/~anatole
For more info

<u>An ounce of Gold in the form of 100</u> shares in iShares Trust (IAU) --currently worth a total of ~US\$1.7k</u>

for the first person who presents a solution to this problem:

Find---or show non-existence of---a system independent (i.e. valid for all of CCS as defined above) interpolating function *f* for which two differing (iso-)electronic Hamiltonians transform such that

$$\left. \frac{\partial E(\lambda)}{\partial \lambda} \right|_{\lambda=0} = \left\langle \frac{\partial H(f_{if}(\lambda))}{\partial \lambda} \right\rangle_{\lambda=0} = E_f - E_i$$

where

$$egin{array}{rcl} 0&\leq\lambda\leq1\ E(\lambda=0)&=\langle H(f(\lambda=0))
angle&=\langle H_i
angle&=E_i\ E(\lambda=1)&=\langle H(f(\lambda=1))
angle&=\langle H_f
angle&=E_f \end{array}$$

Correlational: Machine Learning

°Ö

Q

 285×380

Google anatole.jpeg × describe image here

Past hour Past 24 hours Past week Past month Past year Custom range ...

Search

Everything

Images

Maps Videos

News

More

Shopping

More sizes

Any time

40+ items - ci. jobs |; contact us |; computing resources |; help desk ... Igor Aronson Adjunct Professor Gyorgy Asst. Bioinformatics Specl/Biochemist Biosciences Babnigg Division

People Directory | Argonne Leadership Computing Facility www.alcf.anl.gov/staff-directory 60+ items - The Argonne Leadership Computing Facility (ALCF) is a DOE ... Yury Alekseev Assistant Computational Scientist, ALCF 630-252 ... 500 × 545 Catalyst 630-252-7573

Bill Allcock ALCF Director of Operations AIG

O. Anatole von Lilienfeld | Argonne Leadership Computing Facility https://www.alcf.anl.gov/staff-directory/o-anatole-von-lilienfeld The Argonne Leadership Computing Facility (ALCF) is a DOE leadership computing facility. The ALCF provides the computational science community with a ... 500 × 545

Visually similar images - Report images

Correlational: Machine Learning

 $\{Z_I, \mathbf{R}_I\} \stackrel{\mathrm{ML}}{\longmapsto} E$

$$E^{est}(\mathbf{M}) = \sum_{i} \alpha_{i} e^{-\frac{d(\mathbf{M}, \mathbf{M}_{i})^{2}}{2\sigma^{2}}}$$

 $\{Z_I, \mathbf{R}_I\} \stackrel{\mathrm{ML}}{\longmapsto} E$

$$E^{est}(\mathbf{M}) = \sum_{i} \alpha_{i} e^{-\frac{d(\mathbf{M}, \mathbf{M}_{i})^{2}}{2\sigma^{2}}}$$

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length

$$H(\{Z_I, \mathbf{R}_I\}) = -\sum_{i} \nabla_i^2 - \sum_{I,i} \frac{Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{I < J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$$

 $\{Z_I, \mathbf{R}_I\} \stackrel{\mathrm{ML}}{\longmapsto} E$

$$E^{est}(\mathbf{M}) = \sum_{i} \alpha_{i} e^{-\frac{d(\mathbf{M}, \mathbf{M}_{i})^{2}}{2\sigma^{2}}}$$

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length

$$M_{IJ} = \begin{cases} 0.5Z_I^{2.4} & \forall I = J, \\ \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} & \forall I \neq J. \end{cases}$$

Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- sort/diagonalize
- fill up w zeros

$$H(\{Z_I, \mathbf{R}_I\}) = -\sum_{i} \nabla_i^2 - \sum_{I,i} \frac{Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{I < J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$$

 $\{Z_I, \mathbf{R}_I\} \stackrel{\mathrm{ML}}{\longmapsto} E$

 $E^{est}(\mathbf{M}) = \sum_{i} \alpha_{i} e^{-\frac{d(\mathbf{M}, \mathbf{M}_{i})^{2}}{2\sigma^{2}}}$

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length

$$M_{IJ} = \begin{cases} 0.5Z_I^{2.4} & \forall \ I = J, \\ \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} & \forall \ I \neq J. \end{cases}$$

Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- sort/diagonalize
- fill up w zeros

$$d(\mathbf{M}, \mathbf{M}_i) = \sqrt{\sum_{IJ} |M_{IJ} - M_{IJ}^{(i)}|^2}$$

Euclidean distance

GDB: All organic molecules up to 13 atoms

Fink, Bruggesser, Reymond *ACIE* (2005), Blum, Reymond *JACS* (2009)

- 1. 7k compositional & constitutional isomers
- 2. Initial coordinates from universal force field [Goddard et al JACS (1992)]
- 3. Relax geometry with DFT
- 4. Calculate atomization energies

$$\min_{\alpha} \qquad \sum_{i} \left(E^{est}(\mathbf{M}_{i}) - E_{i}^{ref} \right)^{2} + \lambda \sum_{i} \alpha_{i}^{2}$$

$$\min_{\alpha} \qquad \sum_{i} \left(E^{est}(\mathbf{M}_{i}) - E^{ref}_{i} \right)^{2} + \lambda \sum_{i} \alpha_{i}^{2}$$

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{E}^{ref} \qquad E^{est}(\mathbf{M}) = \sum_{i} \alpha_{i} e^{-\frac{d(\mathbf{M}, \mathbf{M}_{i})^{2}}{2\sigma^{2}}}$$
$$k(\mathbf{M}, \mathbf{M}') = \exp\left(-\frac{d(\mathbf{M}, \mathbf{M}')^{2}}{2\sigma^{2}}\right)$$

Training for N = 1000 molecules MAE ~15 kcal/mol

http://www.quantum-machine.org/

Tkatchenko (FHI)

Rupp (ETHZ)

Müller (TU Berlin)

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

Matthias Rupp,^{1,2} Alexandre Tkatchenko,^{3,2} Klaus-Robert Müller,^{1,2} and O. Anatole von Lilienfeld^{4,2,*} ¹Machine Learning Group, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Germany

²Institute of Pure and Applied Mathematics, University of California Los Angeles, Los Angeles, California 90095, USA ³Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany ⁴Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 15 June 2011; published 31 January 2012)

We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of ~ 10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

Matthias Rupp,^{1,2} Alexandre Tkatchenko,^{3,2} Klaus-Robert Müller,^{1,2} and O. Anatole von Lilienfeld^{4,2,*}

¹Machine Learning Group Technical University of Rerlin Franklinstr 28/20 10587 Rerlin Germany

PRL 109, 059801 (2012) PHYSICAL REVIEW LETTERS

Comment on "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on density functional theory (DFT)

Jonathan E. Moussa*

Sandia National Laboratories Albuquerque, New Mexico 87185, USA

distributions

$$M_{IJ} = \left\{ \right.$$

$$\frac{5Z_I^{2.4}}{|\mathbf{R}_I - \mathbf{R}_I|}$$

$$N = 4$$

-> 3*N-6 = 6 degrees of freedom

FIG. 2 (color online). A continuous deformation of acetylene. (left) Hydrogen atoms follow the closed curve with the line connecting them fixed to the origin. Carbon atoms remain near their equilibrium positions. (right) Atomization energy as a function of the H-origin-C angle.

Matthias Rupp,^{1,2} Alexandre Tkatchenko,^{3,2} Klaus-Robert Müller,^{1,2} and O. Anatole von Lilienfeld^{4,2,*}

¹Machine Learning Group Technical University of Rerlin Franklinstr 28/20 10587 Rerlin Germany

PHYSICAL REVIEW LETTERS PRL 109, 059801 (2012)

Comment on "Fast and Accurate Modeling of Atomization Energies with Machine Molecular Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on density functional theory (DFT)

Jonathan E. Moussa*

Sandia National Laboratories Albuquerque, New Mexico 87185, USA

distributions

$$M_{IJ} = \langle$$

$$\frac{0.5Z_I^{2.4}}{|\mathbf{R}_I - \mathbf{R}_I|}$$

$$N = 4$$

-> 3*N-6 = 6 degrees of freedom

FIG. 2 (color online). A continuous deformation of acetylene. (left) Hydrogen atoms follow the closed curve with the line connecting them fixed to the origin. Carbon atoms remain near their equilibrium positions. (right) Atomization energy as a function of the H-origin-C angle.

 $\forall I = J, \\ \forall I \neq J.$ Coulomb-matrix unique

- translation
- rotation
- symmetry
- diagonalize sort
- fill up w zeros

Matthias Rupp,^{1,2} Alexandre Tkatchenko,^{3,2} Klaus-Robert Müller,^{1,2} and O. Anatole von Lilienfeld^{4,2,*}

¹Machine Learning Group Technical University of Rerlin Franklinstr 28/20 10587 Rerlin Germany

PHYSICAL REVIEW LETTERS PRL 109, 059801 (2012)

Comment on "Fast and Accurate Modeling of Atomization Energies with Machine Molecular Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on d

PRL 109, 059802 (2012)

Jonathan E. Mous Sandia National] Albuquerque, Ne distributions

$$M_{IJ}$$

N = 4

Rupp et al. Reply: In his Comment [1], J.E. Moussa (JEM) raises concerns regarding the accuracy of our recently published Machine Learning (ML) model [2]. Our performance estimates, based on cross-validated Kernel Ridge Regression, amount to less than 10 kcal/mol mean absolute error (MAE) with respect to DFT-PBE0 [3,4] predictions of atomization energies, using a training set \equiv of more than 7000 small organic molecules from the GDB-13 data set [5]. As such, the ML model achieves an accuracy similar to generalized gradient DFT, and significantly exceeds that of Hartree-Fock or local density approximated DFT [6].

In our Letter we presented numerical evidence that ML models can be built using (i) sufficient examples and (ii) a molecular representation based on Cartesian coordinates and -> 3*N-6 elemental composition without explicitly accounting for the electronic degrees of freedom. Therefore, performance of our

PHYSICAL REVIEW LETTERS

week ending 3 AUGUST 2012

FIG. 1 (color online). Blue line: PBE0. Red dots: ML model using Frobenius norm of, and trained on, Coulomb matrices of geometries corresponding to JEM's example.

Matthias Rupp,^{1,2} Alexandre Tkatchenko,^{3,2} Klaus-Robert Müller,^{1,2} and O. Anatole von Lilienfeld^{4,2,*}

¹Machine Learning Group Technical University of Rerlin Franklinstr 28/20 10587 Rerlin Germany

PHYSICAL REVIEW LETTERS PRL 109, 059801 (2012)

week ending 3 AUGUST 2012

Comment on "Fast and Accurate Modeling of Atomization Energies with Machine Molecular Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on density functional theory (DFT)

Jonathan E. Moussa*

Sandia National Laboratories Albuquerque, New Mexico 87185, USA

in a start a st distributions

$$M_{IJ} = \langle$$

$$0.5Z_I^{2.4} \ rac{Z_IZ_J}{|\mathbf{R}_I-\mathbf{R}_J|}$$

$$N = 4$$

-> 3*N-6 = 6 degrees of freedom

FIG. 2 (color online). A continuous deformation of acetylene. (left) Hydrogen atoms follow the closed curve with the line connecting them fixed to the origin. Carbon atoms remain near their equilibrium positions. (right) Atomization energy as a function of the H-origin-C angle.

 $\forall I = J, \\ \forall I \neq J.$ Coulomb-matrix unique

- translation
- rotation
- symmetry
- diagonalize sort-mutants
- fill up w zeros

http://www.quantum-machine.org/

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, *Phys Rev Lett* (2012); G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, *NJP* accepted (2013); Montavon et al *NIPS proceedings* (2013)

GDB: All organic molecules up to 13 atoms

Calculate 14 properties:

- a. atomization energy (PBE0)
- b. 2 x polarizability (PBE0/SCS)
- c. 6 x HOMO/LUMO (GW/PBE0/ZINDO)
- d. 2 x IP/EA (ZINDO)
- e. 3 x Excitations (ZINDO)

- 1. 7k compositional & constitutional isomers
- 2. Initial coordinates from universal force field [Goddard et al JACS (1992)]
- 3. Relaxed geometry with DFT

The data

,	E (P)	a (P)	a (S)	HOMO (G)	HOMO (P)	HOMO (Z)	LUMO (G)	LUMO (P)	LUMO (Z)	IP (Z)	EA (Z)	$E_{jet}^{\star}(\mathbf{Z})$	$E_{\max}^{*}(\mathbf{Z})$	I _{max} (Z)
E (P)		A. S.	ANNIN STREET	SW.			- man		A State		New York	ANN ANN	- Statistics	
ά (P)	tillige .		. Market					States.			Anton A	and a second sec	AND A	
a (S)	in the second se						- Ale						and a second	
HOMO(G)					/	14				A.A.			Ύβ.	
HOMO(P)				/		14	į		#1 {	M.				
LUMO (P) LUMO (G) HOMO (Z) HOMO (P) HOMO (G)							- And-	, faith	Nº 1			1	1	
LUMO (G)	neggi	·····	-	-	-	4000			Sh-+	- dage	•	Hard same	1	•2948)
(d) OWN	"Dfda	(Stear-	daa.	- Sterring	1000	11 6109	1		1.1	- 1873b)	· · ·		1 *	MOCH.
(Z) OWO	and a state				No.	anterio de la composición de l	1	1	1	1900 1900 1900 1900	1	Je w	1	
IP (Z)				14/4	6.9	1			100		1.	14/	1	
EA (Z)	All	1991				1. A.		1	/	and a second		1	1. A	
$E_{pt}^{*}(Z)$				11		1/1			and a set	and the second second	1.1	1		
Emax (Z)	n billios. Heegast	- Alian Marine	nalian Nation			in de la Constante de la Const	4 	4	21. j	an a	16. (1). M2(1)	111 年 111 年		94 577
I _{max} (Z)					State of the second sec	1			9,	¢.		W.	1.	

http://www.quantum-machine.org/

E (PBE0) *α* (PBE0) α (SCS) HOMO (GW) HOMO (PBE0) HOMO (ZINDO) LUMO (GW) predicted 12 12 0.0 0.5 1.0 1.5 10 -10-11-90-70-508 10 14 14 -9 -8-8 $^{-7}$ -6-9 true true true true true true true $E_{1^{st}}^{\star}$ (ZINDO) Imax (ZINDO) LUMO (PBE0) LUMO (ZINDO) IP (ZINDO) EA (ZINDO) E_{\max}^{\star} (ZINDO) predicted -2 10 11 -2 8 15 0.00 0.25 0.50 0.75 9 0 2 10 5 0 -20 2 8 2 4 6 10 $^{-1}$ 4 true true true true true true true 0.6 E (PBE0) 0.5 HOMO (GW) LUMO (GW) 0.4 $E_{1^{st}}^{\star}$ (ZINDO) MAE [eV] 0.3 Imax (ZINDO) 0.2 0.1 0.0⊾ 500 5000 # samples

http://www.quantum-machine.org/

Property [eV, A^3]	Mean	MAE	Reference MAE
E (PBE0)	-67.79	0.16	$0.15^a, 0.23^b, 0.09 - 0.22^c$
α (PBE0)	11.11	0.11	$0.05 - 0.27^d, 0.04 - 0.14^e$
α (SCS)	11.87	0.07	$0.05 - 0.27^f, 0.04 - 0.14^g$
HOMO (GW)	-9.09	0.16	-
HOMO (PBE0)	-7.01	0.15	2.08^{h}
HOMO (ZINDO)	-9.81	0.16	0.79^{h}
LUMO (GW)	0.78	0.14	-
LUMO (PBE0)	-0.52	0.12	1.30^{h}
LUMO (ZINDO)	1.05	0.11	0.93^{h}
IP (ZINDO)	9.27	0.18	$0.20^{i}, 0.15^{j}$
EA (ZINDO)	0.55	0.12	$0.16^k, 0.11^l$
$E_{1^{st}}^{*}$ (ZINDO)	5.58	0.13	$0.18^m, 0.21^n$
E_{max}^{*} (ZINDO)	8.82	1.07	-
I _{max} (ZINDO)	0.33	0.07	-

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, *NJP* accepted (2013)

http://www.quantum-machine.org/

Sumpter, Noid: Potential energy surfaces for macromolecules. A neural network technique *Chem Phys Lett (1992)*

Lorenz, Gross, Scheffler (FHI): Representing high-dimensional potentialenergy surfaces for reactions at surfaces by neural networks *Chem Phys Lett* (2004)

Manzhos, T. Carrington (Montreal): Using neural networks to represent potential surfaces as sums of products, *J Chem Phys* (2006)

Parrinello, Behler (Bochum): Generalized neural-network representation of high-dimensional potential energy surfaces, *Phys Rev Lett (2010)*

Csanyi (Cambridge): Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons, *Phys Rev Lett (2010)*

Henkelman (UT Austin): Optimizing transition states via kernel based machine learning, *J Chem Phys* (2012)

Burke (UC Irvine): Finding density functionals with machine learning, *Phys Rev Lett* (2012)

Property	Zxyz	СМ	Eig(CM)
Unique	\checkmark	\checkmark	Γ
First principles	\checkmark	\checkmark	\checkmark
Transl. invariant	_		\checkmark
Rotat. invariant	_		\checkmark
Permutat. invariant		-	\checkmark
Symmetry	_		\checkmark
Size extensive	\checkmark		\checkmark
Complete/global	\checkmark		_
Dimensionality	4N	$(N^2 + N)/2$	N
Analytical	\checkmark		\checkmark
Differentiable	N.A.		\checkmark
Uniform length	_	-	-
Variable ranges		\checkmark	\checkmark

Descriptor

$$P(\mathbf{r}) = \sum_{I} Z_{I} e^{-a|\mathbf{r} - \mathbf{R}_{I}|^{2}}$$

$$1 \quad \omega^{2} \mathbf{n}$$

Aaron Knoll (TACC)

$$\mathcal{F}(P) = \frac{1}{(2a)^{3/2}} e^{\frac{\omega^2}{4a}} \sum_{I} Z_{I} e^{i\omega^T \mathbf{R}_{I}}$$

Descriptor

$$P(\mathbf{r}) = \sum_{I} Z_{I} e^{-a|\mathbf{r} - \mathbf{R}_{I}|^{2}}$$

Aaron Knoll (TACC)

$$\mathcal{F}(P) = \frac{1}{(2a)^{3/2}} e^{\frac{\omega^2}{4a}} \sum_{I} Z_I e^{i\omega^T \mathbf{R}_I}$$
$$\mathcal{F}\mathcal{F}^* = \frac{1}{(2a)^3} e^{\frac{\omega^2}{2a}} \sum_{J} \sum_{I} Z_I Z_J \cos[\omega^T (\mathbf{R}_I - \mathbf{R}_J)]$$
$$M_{IJ} = Z_I Z_J \cos[\omega^T (\mathbf{R}_I - \mathbf{R}_J)]$$

Descriptor

$$P(\mathbf{r}) = \sum_{I} Z_{I} e^{-a|\mathbf{r} - \mathbf{R}_{I}|^{2}}$$

Aaron Knoll (TACC)

$$\mathcal{F}(P) = \frac{1}{(2a)^{3/2}} e^{\frac{\omega^2}{4a}} \sum_{I} Z_I e^{i\omega^T \mathbf{R}_I}$$

$$\mathcal{F}\mathcal{F}^* = \frac{1}{(2a)^3} e^{\frac{\omega^2}{2a}} \sum_{J} \sum_{I} Z_I Z_J \cos[\omega^T (\mathbf{R}_I - \mathbf{R}_J)]$$

$$M_{IJ} = Z_I Z_J \cos[\omega^T (\mathbf{R}_I - \mathbf{R}_J)]$$

$$FD = \frac{1}{(2a)^3} e^{\frac{\omega^2}{2a}} \sum_{J} \sum_{I} Z_I Z_J \cos[\omega \times d_{IJ}],$$

Fourier descriptor FD of four diatomics, H₂ (a), HHe (b), HC (c), and HCl (d), for five interatomic distances d

 $FD = \frac{1}{(2a)^3} e^{\frac{\omega^2}{2a}} \sum_{J} \sum_{I} Z_I Z_J \cos[\omega \times d_{IJ}],$

Homometric molecules?

 $FD = \frac{1}{(2a)^3} e^{\frac{\omega^2}{2a}} \sum_{I} \sum_{I} Z_I Z_J \cos[\omega \times d_{IJ}],$

Homometric molecules?

 $\sum_J Z_J e^{-b(d-d_{IJ})^2}$

 $FD = \frac{1}{(2a)^3} e^{\frac{\omega^2}{2a}} \sum_{I} \sum_{I} Z_I Z_J \cos[\omega \times d_{IJ}],$

Homometric molecules?

 $\sum_J Z_J e^{-b(d-d_{IJ})^2}$

 $R(d) = \sum_{I} Z_{I}^{2} \cos\left[\frac{1}{Z_{I}} \sum_{I} Z_{J} e^{-b(d-d_{IJ})^{2}}\right]$

 $d d d_{IJ}^{max}$ $D(M_i, M_j)$ $dd (R_i(d) - R_j(d))^2$ d=0

Thanks for your attention!

First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

OAvL, Int J Quant Chem (2013), http://onlinelibrary.wiley.com/doi/10.1002/qua.24375/abstract

http://www.quantum-machine.org/

Data stratification

Data stratification

Misra et al JCTC (2011)

Outlook: Selection bias Equal interval sampling after 10 points

Balaprakash (ANL)

Vazquez (ANL)

Outlook: Selection bias Sequential sampling after 100 points

Balaprakash (ANL)

Vazquez (ANL)

Outlook: Selection bias

Balaprakash (ANL)

Vazquez (ANL)

Outlook: Selection bias Training set distribution

Balaprakash (ANL)

Vazquez (ANL)

Outlook: Selection bias

Balaprakash (ANL)

Vazquez (ANL)

Thanks for your attention!

First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

OAvL, Int J Quant Chem (2013), http://onlinelibrary.wiley.com/doi/10.1002/qua.24375/abstract

http://www.quantum-machine.org/

OAvL and A Knoll, in preparation (2013)

Locality

Correlational: Kernel Ridge Regression

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

Correlational: Regression 2

J. Behler, *Phys Chem Chem Phys* (2011)

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, *submitted* (2012)

Transferability (no overfitting)

For training set: *k*-fold **cross-validation**

- 1. divide data into *k* blocks
- 2. predict each block with model trained on remaining blocks
- 3. average coefficients

Two nested loops for training and hyper parameter optimization

Apply to test set to measure out-of-sample performance

Correlational: Regression 2

J. Behler, Phys Chem Chem Phys (2011)

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, *NJP* accepted (2013)

Deep Neural Networks – PCA on properties for four layers

layer 1 layer 2 layer 0 layer 3 Ē ж, Ц

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, *NJP* accepted (2013)

1. Interpolate binding: a. E(f=3) = 0b. E(f=1) = E(PBE0)c. dE/df(f=1) = 0d. E(f=2/3) = 0Train on 1k molecules = 00

3. Experiment: Predict binding curve for some molecules

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, *submitted* (2012)