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If, in some cataclysm, all scientific knowledge were to be destroyed, and 
only one sentence passed on to the next generation of creatures, what 
statement would contain the most information in the fewest words? 

I believe it is the atomic hypothesis (or atomic fact, or whatever you wish 
to call it) that all things are made of atoms — little particles that move 
around in perpetual motion, attracting each other when they are a little 
distance apart, but repelling upon being squeezed into one another. In 
that one sentence you will see an enormous amount of information 
about the world, if just a little imagination and thinking are applied.

Feynman Lectures of Physics (1964)
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``QMC is not a black-box’’
(M. Foulkes) 

… 

``One material every 2 s by 2016’’
(T. Mueller)

``QMC can inform improvements of current DFTs’’
(M. Gillan and A. Tkatchenko)

Increase DFT’s transferability to properly account for 
● spin states
● excited states
● van der Waals

Define transferability!

A method is called transferable if its error is invariant wrt changes in atomic configuration 
and composition
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``QMC is not a black-box’’
(M. Foulkes) 

… 

``One material every 2 s by 2016’’
(T. Mueller)

``QMC can inform improvements of current DFTs (or other methods)’’
(M. Gillan, A. Tkatchenko, ...)

Increase DFT’s transferability to properly account for 
● spin states
● excited states
● van der Waals

Define transferability!

A method is called transferable if its error is invariant wrt changes in atomic configuration 
and composition == chemical compound space



Computational design ...



– Infections
– Metabolic syndrome
– Aging
– Cancer
...



Combinatorial catastrophe 
number of small organic molecules > 1060 

Nature Insight on chemical space (2004)

  Assume 1 property evaluation ~ 1 s
                 → exhaustive screening ~ 1052 yrs
                              (age of universe ~1010 yrs)

Why is this hard?

 

Edisonian approach
1878
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Combinatorial problem 

How many stoichiometries have Np = 40 protons? 

Discrete number theory

● Integer partition of Np

● Number of ways to write 
Np as sum of positive 
integers

● Young-Ferrers diagrams

→ 40 protons yield > 37k stoichiometriesZr

H40

Ca2

ZnNe

O5

ScH19

He20

B8

OAvL, Int J Quant Chem, (2013)



Combinatorial problem - availability heuristic?

OAvL, Int J Quant Chem, (2013)
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Combinatorial catastrophe 
number of small organic molecules > 1060 

Nature Insight on chemical space (2004)  

  Assume 1 property evaluation ~ 1 s
                 → exhaustive screening ~ 1052 yrs
                              (age of universe ~1010 yrs)

New

DFT & Surface Design 

 

DFT & Surface Adsorption 

Franceschetti and Zunger, Nature (1999)

Why is this hard?



Right compound for right reason!

Franceschetti and Zunger, Nature (1999)



● No analytic solution
● Ill-defined
● high dimensional
● expensive

        → Iterative minimization

1) Transferable: First principles (QM, 
UFF)
2) Smart: Variational (dP/dX), Genetic, ...
3) Fast: Correlational (Machine Learning)
4) Muscle: Supercomputing & Data

Right compound for right reason!

Franceschetti and Zunger, Nature (1999)



First Principles 

Schrödinger



First Principles 

 

Feynman

Schrödinger

variational (deductive)



First Principles 

 

Feynman

Schrödinger

variational (deductive)

Alchemy

1. Free energies

2. Gradients to optimize



*

Fractional Z in QM

 Nature (2000)

 



Variational: Gradients

 

Fukui function: Response of frontier 
orbitals to molecular changes

Conceptual DFT (Parr, Yang et al)

Fukui
Parr

Mermin

Fractional Ne



Variational: Gradients

 

FeynmanHellmann

OAvL et al, Phys Rev Lett (2005)

Fractional Ne

Fractional ZI

Weigend and Ahlrichs J Chem Phys (2004)

Yang & Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)



Variational: Fractional nuclei

Hess' law

 

Tuckerman (NYU)

Weigend and Ahlrichs J Chem Phys (2004)

Yang & Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)



Variational: Fractional nuclei

Weigend and Ahlrichs J Chem Phys (2004)

Yang & Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

Hess' law

 

Tuckerman (NYU)



 

Haber-Bosch: N2 + 3 H2             2 NH3

Sabatier's principle

Nørskov et al. Nature Chemistry (2009)
Nørskov et al. Science (2005)
Nørskov et al. Phys Rev Lett (2005)
Nørskov et al. J Am Chem Soc. (2001)

Adsorption



 

 

    

Volcano for oxygen reduction reaction: Oxygen binding

Ebind = E(Pd79) – E(Pd79-O) – 0.5 E(O2)

 

Henkelman (UT) Sheppard (LANL)

D Sheppard, G Henkelman, OAvL, J Chem Phys (2010)

How to dope?

Adsorption



D Sheppard, G Henkelman, OAvL, J Chem Phys (2010)

 μn,I = ∂Ebind/∂ZI 
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Volcano for oxygen reduction reaction: Oxygen binding

 

Henkelman (UT) Sheppard (LANL)
Ebind = E(Pd79) – E(Pd79-O) – 0.5 E(O2)

Adsorption



Dan Sheppard, PhD thesis, UT Austin 2010

Target oxygen binding value: 1.65 eV

 

Henkelman (UT) Sheppard (LANL)
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Henkelman (UT) Sheppard (LANL)

Dan Sheppard, PhD thesis, UT Austin 2010

Adsorption



Predicted changes for various N to O mutations (out of 32)
Preliminary results from Moritz to Baben (group of Prof. Schneider, RWTH Aachen)

 

TiAlN
2

Al-vacancy energies [eV]

Defects



Is Z really a good variable?



Quam & Quam, J Chem Educ (1934)
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Is Z really a good variable?

 



λ
Vertical changes: 
``redox''
Example: Li → Li+  + e-

Horizontal changes: 
      iso-electronic & ``alchemical''
Example: 
-All constitutional isomers
-hydrazine (N2H4) → CH3OH
-same number of valence electrons 

 

Generalization
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OAvL J Chem Phys (2009)

Hohenberg Kohn

Generalization



Generalization

 OAvL, Int J Quant Chem, (2013)



Example?

OAvL JCP 
(2009)  



But what about prediction?

OAvL JCP 
(2009)  
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Prediction?

OAvL JCP 
(2009)

In analogy to:
Smith and van Gunsteren JCP (1994)

 



Prediction?

OAvL JCP 
(2009)

In analogy to:
Smith and van Gunsteren JCP (1994)

For reference pairs:
CH3NH2 → CH3CH3
CH3OH → CH3CH3
CH3F → CH3CH3
 

 



        

Ellipticine, intercalated 
between 2 Watson-Crick 
base-pairs w backbone, 
using vdW+DFT 
(GGA+DCACP) 
J Phys Chem B (2007)

Drug design?

 OAvL, Int J Quant Chem (2013)



Prediction?

 

System dependent 
derivatives??? 



Prediction?SYSTEM 
DEPENDENT--- 
PROBABLY THE 
WORST OF ALL 
SINS IN DFT
K. Burke, IPAM, April 2011

 



Help!

WANTED!
Jacob's Ladder for CCS

 



Help! → Swarm Intelligence

Erdős problems
Throughout his career, 
Erdős would offer US$ 
prizes for solutions to 
unresolved problems.
http://wikipedia.org

 



An ounce of Gold in the form of 100 
shares in iShares Trust (IAU) --- 
currently worth a total of ~US$1.7k 

for the first person who presents a solution to 
this problem:

Find---or show non-existence of---a system 
independent (i.e. valid for all of CCS as 
defined above) interpolating function f for 
which two differing (iso-)electronic 
Hamiltonians transform such that 

See
www.alcf.anl.gov/~anatole
For more info

Win a prize!!!



First Principles 

 

Feynman

Schrödinger

variational (deductive)

Alchemy

1. Free energies

2. Gradients to optimize



First Principles 

 

Feynman

Schrödinger

Vapnik

variational (deductive)

correlational (inductive)

supervised 
learning



Correlational: Machine Learning



Correlational: Machine Learning



First Principles 

 

Schrödinger

Vapnik

correlational (inductive)

supervised 
learning

Infer solution by comparison 
to previous examples

● Regression method?
● Function?
● Variables?
● Metric?
● Data?



Non-linear function
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● unique
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● rotation invariant
● symmetry invariant
● index invariant
● constant length
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Non-linear function

Desirable descriptors are
● unique
● translation invariant
● rotation invariant
● symmetry invariant
● index invariant
● constant length

Euclidean distance

Coulomb-matrix
● unique
● translation
● rotation
● symmetry
● sort/diagonalize
● fill up w zeros



GDB: All organic molecules up to 13 atoms

Fink, Bruggesser, Reymond ACIE (2005), 
Blum, Reymond JACS (2009)

1. 7k compositional & 
constitutional isomers

2. Initial coordinates from 
universal force field [Goddard et 
al JACS (1992)]

3. Relax geometry with DFT

 

4. Calculate atomization energies







Training for N = 1000 
molecules
MAE ~15 kcal/mol
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Training for N = 1000 
molecules
MAE ~15 kcal/mol

Systematic eror decay

PBE0: ~1000 seconds
     ML: ~milli seconds



Rupp (ETHZ)Tkatchenko (FHI)

Müller (TU Berlin)

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

http://www.quantum-machine.org/



 



 

Coulomb-matrix
● unique
● translation
● rotation
● symmetry
● diagonalize
● fill up w zeros

N = 4 
-> 3*N-6 = 6 degrees of freedom

???
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N = 4 
-> 3*N-6 = 6 degrees of freedom

Coulomb-matrix
● unique
● translation
● rotation
● symmetry
● diagonalize sort mutants
● fill up w zeros



G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, 
OAvL, NJP accepted (2013); Montavon et al NIPS proceedings (2013)

Montavon (TU Berlin)

Hansen (FHI) Rupp (ETHZ)Tkatchenko (FHI)

Gobre (FHI) Müller (TU Berlin)

Vazquez (ANL)

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012);

http://www.quantum-machine.org/



Calculate 14 properties:

a. atomization energy (PBE0)

b. 2 x polarizability (PBE0/SCS)

c. 6 x HOMO/LUMO 
(GW/PBE0/ZINDO)

d. 2 x IP/EA (ZINDO)

e. 3 x Excitations (ZINDO)

1. 7k compositional & 
constitutional isomers

2. Initial coordinates from 
universal force field [Goddard et 
al JACS (1992)]

3. Relaxed geometry with DFT

GDB: All organic molecules up to 13 atoms



The data
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G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, 
OAvL, NJP accepted (2013)

[eV, A^3]



Kernel Ridge Regression Artificial Neural Networks

http://www.quantum-machine.org/



Henkelman (UT Austin): Optimizing transition states via kernel 
based machine learning, J Chem Phys (2012)

Burke (UC Irvine): Finding density functionals with 
machine learning, Phys Rev Lett (2012)

Parrinello, Behler (Bochum): Generalized neural-network 
representation of high-dimensional potential energy surfaces, Phys 
Rev Lett (2010)

Csanyi (Cambridge): Gaussian Approximation Potentials: The 
Accuracy of Quantum Mechanics, without the Electrons, Phys Rev 
Lett (2010)

Lorenz, Gross, Scheffler (FHI): Representing high-dimensional potential-
energy surfaces for reactions at surfaces by neural networks Chem Phys 
Lett (2004)

Manzhos, T. Carrington (Montreal): Using neural networks to 
represent potential surfaces as sums of products, J Chem Phys 
(2006)

Sumpter, Noid: Potential energy surfaces for macromolecules. A neural 
network technique Chem Phys Lett (1992)







First Principles 

 

Schrödinger

Vapnik

correlational (inductive)

supervised 
learning

Infer solution by comparison 
to previous examples

● Regression method?
● Function?
● Variables?
● Metric?
● Data?
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Aaron Knoll 
(TACC)

Descriptor
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OAvL, M. Rupp, A Knoll, submitted (2013), arxiv.org
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OAvL, M. Rupp, A Knoll, submitted (2013), arxiv.org
Rupp (ETHZ)



First Principles 

 

Feynman

Schrödinger

Vapnik
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correlational (inductive)

supervised 
learning



 

Thanks for your attention!

http://www.quantum-machine.org/

First principles view on chemical compound space: Gaining 
rigorous atomistic control of molecular properties
OAvL, Int J Quant Chem (2013),  http://onlinelibrary.wiley.com/doi/10.1002/qua.24375/abstract
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learning

Infer solution by comparison 
to previous examples

● Regression method?
● Function?
● Variables?
● Metric?
● Data?



Data stratification

 



Data stratification

 

Misra et al JCTC (2011)



 

Outlook: Selection bias

Balaprakash 
(ANL)

Vazquez 
(ANL)

P. Balaprakash and A. Vazquez and OAvL, in preparation (2013)
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First principles view on chemical compound space: Gaining 
rigorous atomistic control of molecular properties
OAvL, Int J Quant Chem (2013),  http://onlinelibrary.wiley.com/doi/10.1002/qua.24375/abstract



M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)



OAvL and A Knoll, in preparation (2013)



Model becomes local at ~5k 
molecules in training set

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

Locality



Correlational: Kernel Ridge Regression

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)



 

J. Behler, Phys Chem Chem Phys (2011)

Correlational: Regression 2

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, 
OAvL, submitted (2012)



Transferability (no overfitting) 

For training set: k-fold cross-validation
1. divide data into k blocks
2. predict each block with model trained on remaining blocks
3. average coefficients

          ...
Two nested loops for training and hyper parameter optimization 

Apply to test set to measure out-of-sample performance

1 2 3 4 5

  ...

1 2 3 4 5

 



 

J. Behler, Phys Chem Chem Phys (2011)

Correlational: Regression 2

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, 
OAvL, NJP accepted (2013)



Deep Neural Networks
– PCA on properties for four layers

 

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, 
OAvL, NJP accepted (2013)



M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)



1. Interpolate binding:
a. E(f=3) = 0
b. E(f=1) = E(PBE0)
c. dE/df(f=1) = 0
d. E(f=2/3) = 0

  Train on 1k molecules

Outlook: Forces
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1. Interpolate binding:
a. E(f=3) = 0
b. E(f=1) = E(PBE0)
c. dE/df(f=1) = 0
d. E(f=2/3) = 0

  Train on 1k molecules

2. Test on remaining 6k molecules
            MAE ~ 15kcal/mol

3. Experiment: Predict binding curve for some molecules

 

Outlook: Forces



M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

 

Neural Networks

Kernel Ridge Regression 

Outlook: Forces

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, 
OAvL, submitted (2012)


