Preaching on first principles views on chemical compound space:
 Atom centered potentials and statistical learning

O. Anatole von Lilienfeld
Institute of Physical Chemistry, Department of Chemistry, University of Basel, Switzerland
Argonne Leadership Computing Facility, Argonne National Laboratory, Illinois, USA

[^0]If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words?

If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words?

I believe it is the atomic hypothesis (or atomic fact, or whatever you wish
 to call it) that all things are made of atoms - little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence you will see an enormous amount of information about the world, if just a little imagination and thinking are applied.

Feynman Lectures of Physics (1964)
"QMC is not a black-box"
(M. Foulkes)
"QMC is not a black-box"
(M. Foulkes)
"'One material every 2 s by 2016"
(T. Mueller)
"QMC is not a black-box"
(M. Foulkes)
"One material every 2 s by 2016"
(T. Mueller)
"QMC can inform improvements of current DFTs (or other methods)" (M. Gillan, A. Tkatchenko, ...)
"QMC is not a black-box"
(M. Foulkes)
"One material every 2 s by 2016"
(T. Mueller)
"QMC can inform improvements of current DFTs (or other methods)" (M. Gillan, A. Tkatchenko, ...)

Increase DFT's transferability to properly account for

- spin states
- excited states
- van der Waals
"QMC is not a black-box"
(M. Foulkes)
"One material every 2 s by 2016"
(T. Mueller)
"QMC can inform improvements of current DFTs (or other methods)" (M. Gillan, A. Tkatchenko, ...)

Increase DFT's transferability to properly account for

- spin states
- excited states
- van der Waals

Define transferability!
A method is called transferable if its error is invariant wrt changes in atomic configuration and composition == chemical compound space

Uneven radia

Computational design ...

$\begin{array}{lr} & 2 \text { TB memory } \\ \text { Node card } & \text { 13.6 TFlops }\end{array}$
32 chips 64 GB memory
435 GFlops

2 TB memory

Compute card
4 cores
2 GB memory
13.6 GFlops

Rack
2 midplanes
32 node cards
1024 nodes

Why is this hard?

Combinatorial catastrophe

 number of small organic molecules > 10^{60} Nature Insight on chemical space (2004)Assume 1 property evaluation $\sim 1 \mathrm{~s}$
\rightarrow exhaustive screening $\sim 10^{52} \mathrm{yrs}$

$$
\text { (age of universe } \sim 10^{10} \mathrm{yrs} \text {) }
$$

Edisonian approach

1878

Combinatorial problem

$\begin{gathered} \hline \text { hydrogen } \\ 1 \\ \mathbf{H} \end{gathered}$																		$\begin{gathered} \hline \text { helium } \\ 2 \\ \text { He } \end{gathered}$
1.0079																		4.0026
${ }^{\text {lithium }}$	beryllium 4												$\begin{gathered} \hline \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} \text { neon } \\ 10 \end{gathered}$
LI	Be												B	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	$\begin{array}{\|c\|} \hline \text { magnesium } \\ 12 \\ \hline \end{array}$												$\begin{array}{c\|} \hline \text { aluminium } \\ 13 \end{array}$	$\begin{aligned} & \text { silicon } \\ & 14 \end{aligned}$	$\begin{gathered} \text { phosphorus } \\ 15 \end{gathered}$	$\begin{gathered} \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} \text { argon } \\ 18 \end{gathered}$
Na	Mg												A	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
$\begin{gathered} \hline \text { potassium } \\ 19 \end{gathered}$	calcium		scandium 21	${ }^{\text {titanium }}$	vanadium 23	chromium 24	manganese 25	iron 26	$\begin{gathered} \hline \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} \hline \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} \text { copper } \\ 29 \end{gathered}$	zinc	${ }^{\text {gallium }}$	germanium	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	$T i$	\mathbf{V}	Cr	Mn	Fe	Co	Ni	CU	Zn	Ga	Ge	AS	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
$\begin{gathered} \text { rubidium } \\ 37 \end{gathered}$	$\begin{aligned} & \hline \text { strontium } \\ & 38 \end{aligned}$		yttrium 39	$\begin{gathered} \hline \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} \text { niobium } \\ 41 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { molybdenum } \\ 42 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { technetium } \\ 43 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ruthenium } \\ & 44 \end{aligned}$	$\begin{gathered} \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} \text { palladium } \\ 46 \end{gathered}$	$\begin{aligned} & \text { silver } \\ & 47 \end{aligned}$	$\begin{gathered} \hline \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} \text { antimony } \\ 51 \end{gathered}$	$\begin{aligned} & \text { tellurium } \\ & 52 \end{aligned}$	iodine 53	$\begin{aligned} & \text { xenon } \\ & 54 \end{aligned}$
Rb	Sr		Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
$\begin{gathered} \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} \text { barium } \\ 56 \end{gathered}$	57-70	$\begin{aligned} & \text { Iutetium } \\ & 71 \end{aligned}$	hafnium 72	$\begin{gathered} \text { tantalum } \\ 73 \end{gathered}$	$\begin{aligned} & \text { tungsten } \\ & \hline 4 \end{aligned}$	$\begin{aligned} & \text { rhenium } \\ & 75 \end{aligned}$	osmium 76	iridium 77	platinum 78	$\begin{gathered} \text { gold } \\ 79 \end{gathered}$	mercury 80	thallium 81	lead 82	bismuth 83	$\begin{aligned} & \text { polonium } \\ & 84 \end{aligned}$	$\begin{gathered} \hline \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} \text { radon } \\ 86 \end{gathered}$
Cs	Ba	*	LU	Hf	Ta	\mathbf{W}	Re	Os	Ir	$P t$	AU	Hg	$T 1$	Pb	$B i$	P_{0}	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
$\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$	radium	89-102	lawrencium 103	$\begin{array}{\|c\|} \hline \text { rutherfordium } \\ 104 \end{array}$	$\begin{aligned} & \text { dubnium } \\ & 105 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { seaborgium } \\ 106 \end{array}$	$\begin{gathered} \hline \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} \text { hassium } \\ 108 \end{gathered}$	meitnerium 109	$\begin{gathered} \hline \text { ununnilium } \\ 110 \end{gathered}$	$\begin{gathered} \hline \text { unununium } \\ \hline 111 \end{gathered}$	$\begin{gathered} \hline \text { ununbium } \\ 112 \end{gathered}$		$\begin{array}{\|c\|} \hline \text { ununquadium } \\ 114 \\ \hline \end{array}$				
	Ra [226]	* *		$\underset{[261]}{\mathbf{R f}}$	Db [262]	Sg [266]	Bh [264]	Hs [269]	Mt [268]	Uun [271]	Uuu [272]	Uub [277]		Uuq [289]				

*Lanthanide series	$\begin{array}{l\|} \hline \text { lanthanum } \\ 57 \end{array}$	$\begin{gathered} \text { cerium } \\ 58 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { praseodymium } \\ 59 \end{array}$	$\begin{gathered} \text { neodymium } \\ 60 \end{gathered}$	$\begin{array}{c\|} \hline \text { promethium } \\ 61 \end{array}$	$\begin{gathered} \text { samarium } \\ 62 \end{gathered}$	$\begin{aligned} & \hline \text { europium } \\ & 63 \end{aligned}$	gadolinium 64	$\begin{gathered} \hline \text { terbium } \\ 65 \end{gathered}$	$\begin{gathered} \text { dysprosium } \\ 66 \end{gathered}$	$\begin{aligned} & \text { holmium } \\ & 67 \end{aligned}$	$\begin{aligned} & \text { erbium } \\ & 68 \end{aligned}$	$\begin{gathered} \text { thulium } \\ 69 \end{gathered}$	$\begin{aligned} & \hline \text { ytterbium } \\ & 70 \end{aligned}$
	La	Ce	Pr	Nd	Pm	Sm	ㅌU	Gd	Tb	Dy	Ho	Er	TM	Yb
**Actinide series	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	$\begin{gathered} \text { astinium } \\ 89 \\ \hline \end{gathered}$	$\begin{gathered} \text { thorium } \\ 90 \end{gathered}$	$\begin{gathered} \hline \text { protactinium } \\ 91 \end{gathered}$		$\begin{aligned} & \text { neptunium } \\ & 93 \end{aligned}$	$\begin{array}{c\|} \hline \text { plutonium } \\ 94 \end{array}$	$\begin{aligned} & \text { americium } \\ & 95 \end{aligned}$	$\begin{aligned} & \text { curium } \\ & \hline 96 \end{aligned}$	$\begin{gathered} \text { Perkelium } \\ 97 \end{gathered}$	$\begin{gathered} \hline \text { californium } \\ 98 \end{gathered}$	einsteinium 99	$\begin{aligned} & \text { fermium } \\ & 100 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { mendelevium } \\ 101 \end{array}$	$\begin{aligned} & \hline \text { nobelium } \\ & 102 \end{aligned}$
	Ac	Th	Pa	U	No	Pu	Am	Cm	BK	Cf	ES	FM	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Combinatorial problem

How many stoichiometries have $N_{p}=40$ protons?

Combinatorial problem

 How many stoichiometries have $N_{p}=40$ protons?

Combinatorial problem

 How many stoichiometries have $N_{p}=40$ protons?
Discrete number theory

- Integer partition of N_{p}

- Young-Ferrers diagrams N_{p} as sum of positive integers
- Number of ways to write
$\rightarrow 40$ protons yield $>37 \mathrm{k}$ stoichiometries

Combinatorial problem - availability heuristic?

Why is this hard?

Combinatorial catastrophe

number of small organic molecules > 10^{60}
Nature Insight on chemical space (2004)

Why is this hard?

Combinatorial catastrophe

 number of small organic molecules > 10^{60} Nature Insight on chemical space (2004)Assume 1 property evaluation $\sim 1 \mathrm{~s}$
\rightarrow exhaustive screening $\sim 10^{52} \mathrm{yrs}$

$$
\text { (age of universe } \sim 10^{10} \mathrm{yrs} \text {) }
$$

New

Franceschetti and Zunger, Nature (1999)

Why is this hard?

Combinatorial catastrophe

 number of small organic molecules > 10^{60} Nature Insight on chemical space (2004)Assume 1 property evaluation $\sim 1 \mathrm{~s}$
\rightarrow exhaustive screening $\sim 10^{52} \mathrm{yrs}$

$$
\text { (age of universe } \sim 10^{10} \mathrm{yrs} \text {) }
$$

New

Why is this hard?

Combinatorial catastrophe

 number of small organic molecules > 10^{60} Nature Insight on chemical space (2004)Assume 1 property evaluation $\sim 1 \mathrm{~s}$
\rightarrow exhaustive screening $\sim 10^{52} \mathrm{yrs}$

$$
\text { (age of universe } \sim 10^{10} \mathrm{yrs} \text {) }
$$

New

Right compound for right reason!

Direct approach

$$
\min _{\left\{Z_{I}, \mathbf{R}_{I}\right\}} \sum_{i} \omega_{i}\left(P_{i}\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)-P_{i}^{\mathrm{ref}}\right)^{2}
$$

Franceschetti and Zunger, Nature (1999)

Right compound for right reason!

Franceschetti and Zunger, Nature (1999)

- No analytic solution
- III-defined
- high dimensional
- expensive
\rightarrow Iterative minimization

$$
\min _{\left\{Z_{I}, \mathbf{R}_{I}\right\}} \sum_{i} \omega_{i}\left(P_{i}\left(\left\{Z_{I}, \mathbf{R} I\right\}\right)-P_{i}^{\mathrm{ref}}\right)^{2}
$$

1) Transferable: First principles (QM, UFF)
2) Smart: Variational (dP/dX), Genetic, ...
3) Fast: Correlational (Machine Learning)
4) Muscle: Supercomputing \& Data

First Principles $\quad H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Schrödinger

First Principles $\quad H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Alchemy

1. Free energies
2. Gradients to optimize

$$
\frac{\partial E[H]}{\partial R_{I x}}=\langle\Psi| \frac{\partial H}{\partial R_{I x}}|\Psi\rangle
$$

$$
\frac{\partial E[H]}{\partial Z_{I}}=\langle\Psi| \frac{\partial H}{\partial Z_{I}}|\Psi\rangle
$$

Constraints on the composition of the Earth's core from ab initio calculations

D. Alfè ${ }^{*}$, M. J. Gillan \dagger \& G. D. Price*

* Research School of Geological and Geophysical Sciences, Birkbeck College and University College London, Gower Street, London WC1E 6BT, UK
\dagger Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, UK

Knowledge of the composition of the Earth's core ${ }^{1-3}$ is important for understanding its melting point and therefore the temperature at the inner-core boundary and the temperature profile of the core and mantle. In addition, the partitioning of light elements between solid and liquid, as the outer core freezes at the innercore boundary, is believed to drive compositional convection ${ }^{4}$, which in turn generates the Earth's magnetic field. It is generally

Nature (2000)

Variational: Gradients

Fractional N_{e}

$$
\frac{\partial E[H]}{\partial N_{e}}=\mu_{e}=\epsilon
$$

Parr

Fukui function: Response of frontier orbitals to molecular changes

Conceptual DFT (Parr, Yang et al)

Variational: Gradients

Fractional N_{e}

$$
\frac{\partial E[H]}{\partial N_{e}}=\mu_{e}=\epsilon
$$

Fractional Z_{I}

OAvL et al, Phys Rev Lett (2005)

$$
\frac{\partial E[H]}{\partial Z_{I}}=\langle\Psi| \frac{\partial H}{\partial Z_{I}}|\Psi\rangle=\int d \mathbf{r} \frac{n(\mathbf{r})}{\left|\mathbf{r}-\mathbf{R}_{I}\right|}-\sum_{J} \frac{Z_{J}}{\left|\mathbf{R}_{J}-\mathbf{R}_{I}\right|}
$$

Feynman

Weigend and Ahlrichs J Chem Phys (2004)
Yang \& Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

Variational: Fractional nuclei

Tuckerman (NYU)

Weigend and Ahlrichs J Chem Phys (2004)
Yang \& Beratan et al JACS (2006)
OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

Variational: Fractional nuclei

Weigend and Ahlrichs J Chem Phys (2004)
Yang \& Beratan et al JACS (2006)

OAvL: Phys Rev Lett (2005), J Chem Phys (2006, 2009), J Chem Theory Comput (2007)

Adsorption

Haber-Bosch: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

Sabatier's principle

Nørskov et al. Nature Chemistry (2009)
Nørskov et al. Science (2005)
Nørskov et al. Phys Rev Lett (2005)
Nørskov et al. J Am Chem Soc. (2001)

Calculated ammonia synthesis rates: $400 \mathrm{C}, 50$ bar, $\mathrm{H} 2: \mathrm{N} 2=3: 1,5 \% \mathrm{NH} 3$

Adsorption

Volcano for oxygen reduction reaction: Oxygen binding $E^{\text {bind }}=E\left(\mathrm{Pd}_{79}\right)-E\left(\mathrm{Pd}_{79}-\mathrm{O}\right)-0.5 E\left(\mathrm{O}_{2}\right)$

Henkelman (UT) Sheppard (LANL)

How to dope?

Adsorption

Volcano for oxygen reduction reaction: Oxygen binding $E^{\mathrm{bind}}=E\left(\mathrm{Pd}_{79}\right)-E\left(\mathrm{Pd}_{79}-\mathrm{O}\right)-0.5 E\left(\mathrm{O}_{2}\right)$

Henkelman (UT) Sheppard (LANL)

Adsorption

Volcano for oxygen reduction reaction: Oxygen binding $E^{\mathrm{bind}}=E\left(\mathrm{Pd}_{79}\right)-E\left(\mathrm{Pd}_{79}-\mathrm{O}\right)-0.5 E\left(\mathrm{O}_{2}\right)$

$$
\mu_{n, I}=\partial E^{\mathrm{bind}} / \partial Z_{I}
$$

to weaken binding

1st order expansion for 10 doped mutants

$$
\partial_{\lambda} E^{\mathrm{bind}}=\sum_{I} \mu_{n, I}^{\mathrm{bind}} \partial_{\lambda} Z_{I}(\lambda)
$$

Adsorption

Volcano for oxygen reduction reaction: Oxygen binding

$$
E^{\text {bind }}=E\left(\mathrm{Pd}_{79}\right)-E\left(\mathrm{Pd}_{79}-\mathrm{O}\right)-0.5 E\left(\mathrm{O}_{2}\right)
$$

$$
\mu_{n, I}=\partial E^{\mathrm{bind}} / \partial Z_{I}
$$

N_{I}| 45 | 46 | 47 |
| :---: | :---: | :---: |
| Rh | Pd | Ag |

to weaken binding

1st order expansion for 10 doped mutants

$$
\partial_{\lambda} E^{\mathrm{bind}}=\sum_{I} \mu_{n, I}^{\mathrm{bind}} \partial_{\lambda} Z_{I}(\lambda)
$$

Adsorption

Henkelman (UT) Sheppard (LANL)

Target oxygen binding value: 1.65 eV

$$
\min _{\left\{Z_{I}, \mathbf{R}_{I}\right\}}\left(P\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)-P^{\mathrm{ref}}\right)^{2}
$$

Dan Sheppard, PhD thesis, UT Austin 2010

Adsorption

Defects

Predicted changes for various N to O mutations (out of 32)
Preliminary results from Moritz to Baben (group of Prof. Schneider, RWTH Aachen)

Is Z really a good variable?

$\begin{gathered} \text { hydrogen } \\ 1.0079 \end{gathered}$																		
1.0079																		4.0026
$\begin{gathered} \text { lithium } \\ 3 \end{gathered}$	beryllium 4												$\begin{gathered} \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} \text { neon } \\ 10 \end{gathered}$
-1													8	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
$\begin{gathered} \hline \text { sodium } \\ \hline 11 \end{gathered}$	$\begin{gathered} \hline \text { magnesium } \\ 12 \end{gathered}$												$\begin{aligned} & \text { aluminium } \\ & 13 \end{aligned}$	$\begin{gathered} \text { silicon } \\ 14 \end{gathered}$	$\begin{gathered} \hline \text { phosphorus } \\ 15 \end{gathered}$	$\begin{gathered} \hline \text { sulfur } \\ 16 \end{gathered}$	$\begin{aligned} & \hline \text { chlorine } \\ & 17 \end{aligned}$	$\begin{gathered} \hline \text { argon } \\ 18 \end{gathered}$
Na	Mg													S	P	S	C	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
$\begin{gathered} \text { potassium } \\ 19 \end{gathered}$	$\begin{aligned} & \text { calcium } \\ & 20 \end{aligned}$		$\begin{aligned} & \hline \text { scandium } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { titanium } \\ & 22 \end{aligned}$	$\begin{gathered} \text { vanadium } \\ 23 \end{gathered}$	$\begin{aligned} & \text { chromium } \\ & 24 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { manganese } \\ 25 \\ \hline \end{array}$	$\begin{gathered} \text { iron } \\ 26 \end{gathered}$	$\begin{gathered} \hline \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} \hline \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} \text { copper } \\ 29 \end{gathered}$	$\begin{gathered} \text { zinc } \\ 30 \end{gathered}$	$\begin{gathered} \hline \text { gallium } \\ 31 \end{gathered}$	$\begin{aligned} & \text { germanium } \\ & 32 \end{aligned}$	$\begin{gathered} \text { arsenic } \\ 33 \end{gathered}$	$\begin{aligned} & \text { selenium } \\ & 34 \end{aligned}$	$\begin{gathered} \text { bromine } \\ 35 \end{gathered}$	$\begin{gathered} \text { krypton } \\ 36 \end{gathered}$
	Ca		$S C$			Cr	Mn	Fe	CO	N'	Cu	Zn		Ge	$A S$	Se		Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	$\begin{aligned} & \text { strontium } \\ & 38 \end{aligned}$		yttrium 39	$\begin{gathered} \hline \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} \text { niobium } \\ \mathbf{4 1} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { molybdenum } \\ 42 \end{array}$	$\begin{gathered} \hline \text { technetium } \\ 43 \end{gathered}$	$\begin{aligned} & \text { ruthenium } \\ & 44 \end{aligned}$	rhodium 45	$\begin{gathered} \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} \text { cadmium } \\ 48 \end{gathered}$	indium	$\begin{aligned} & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} \text { antimony } \\ 51 \end{gathered}$	$\begin{aligned} & \text { tellurium } \\ & 52 \end{aligned}$	$\begin{gathered} \text { iodine } \\ 53 \end{gathered}$	xenon 54
Po			\mathbf{Y}	$7 r$	No	MO	TC	Ru	Rh	Pd	Ag	Cd	1 n	Sn	Sb	Te		Me
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
$\begin{array}{c\|} \hline \text { caesium } \\ 55 \end{array}$	$\begin{gathered} \text { barium } \\ 56 \end{gathered}$	57-70	$\begin{gathered} \text { lutetium } \\ 71 \end{gathered}$	$\begin{gathered} \text { hafnium } \\ 72 \end{gathered}$	$\begin{gathered} \text { tantalum } \\ 73 \end{gathered}$	tungsten 74	$\begin{gathered} \text { rhenium } \\ 75 \end{gathered}$	osmium 76	iridium	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	$\begin{gathered} \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} \text { radon } \\ 86 \end{gathered}$
CS	$B a$	*	$L U$	Hf	Ta	M	$R e$	Os	$I r$		AU	Hg					At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
$\begin{gathered} \text { francium } \\ 87 \end{gathered}$	radium 88	89-102	$\begin{gathered} \text { lawrencium } \\ 103 \end{gathered}$	rutherfordium 104	dubnium 105	$\begin{gathered} \text { seaborgium } \\ 106 \end{gathered}$	bohrium 107	$\begin{gathered} \text { hassium } \\ 108 \end{gathered}$	$\begin{gathered} \text { meitnerium } \\ 109 \end{gathered}$	$\begin{gathered} \text { ununnilium } \\ 110 \end{gathered}$	unununium 111	$\begin{gathered} \text { ununbium } \\ 112 \end{gathered}$		ununquadium 114				
[223]	Ra		[262]	[261]	[262]	30	Bh [264]	[269]	Mt [268]	Uun [271]	Uuu [272]	Uub [277]		$\underset{[289]}{ }$				

Is Z really a good variable?

Figure 16.-Nodder's Periodic Table

Quam \& Quam, J Chem Educ (1934)

Is Z really a good variable?

Figure 21.-Emerson's Helix
Quam \& Quam, J Chem Educ (1934)

Is Z really a good variable?

Figure 21.-Emerson's Helix

Generalization

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Alchemy

1. Free energies
2. Gradients to optimize

$$
\frac{\partial E[H]}{\partial R_{I x}}=\langle\Psi| \frac{\partial H}{\partial R_{I x}}|\Psi\rangle
$$

$$
\frac{\partial E[H]}{\partial Z_{I}}=\langle\Psi| \frac{\partial H}{\partial Z_{I}}|\Psi\rangle
$$

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Schrödinger

Alchemy

1. Free energies
2. Gradients to optimize
variational (deductive)

$\frac{\partial E[H]}{\partial R_{I x}}$	$=\langle\Psi\| \frac{\partial H}{\partial R_{I x}}\|\Psi\rangle$
$\frac{\partial E[H]}{\partial Z_{I}}$	$=\langle\Psi\| \frac{\partial H}{\partial Z_{I}}\|\Psi\rangle$
$E(H(\lambda))$	$=E\left(H_{i}+\lambda\left(H_{f}-H_{i}\right)\right)$
$\frac{\partial E[H]}{\partial \lambda}$	$=\langle\Psi\| \frac{\partial H(\lambda)}{\partial \lambda}\|\Psi\rangle$

Generalization

$$
\begin{aligned}
E(H(\lambda)) & =E\left(H_{i}+\lambda\left(H_{f}-H_{i}\right)\right) \\
\frac{\partial E[H]}{\partial \lambda} & =\langle\Psi| \frac{\partial H(\lambda)}{\partial \lambda}|\Psi\rangle \\
& =\int d \mathbf{r} n_{\lambda}(\mathbf{r}) \times\left[v_{j}^{e x t}(\mathbf{r})-v_{i}^{e x t}(\mathbf{r})\right]
\end{aligned}
$$

Hohenberg

Kohn

Generalization

OAvL, Int J Quant Chem, (2013)

Example?

$$
\epsilon(\lambda)=\frac{1}{\delta}\left(E\left(N_{e}, \lambda\right)-E\left(N_{e}-\delta, \lambda\right)\right)
$$

$$
\partial_{\lambda} \epsilon(\lambda)=\frac{1}{\delta}\left(\int d \mathbf{r}\left[n_{\lambda}(\mathbf{r})-n_{\lambda}^{+\delta}(\mathbf{r})\right] \times\left[v_{j}^{e x t}(\mathbf{r})-v_{i}^{e x t}(\mathbf{r})\right]\right)
$$

vs.
$d \epsilon(\lambda) / d \lambda=\frac{1}{\delta}(\epsilon(\lambda+\delta)-\epsilon(\lambda))$
OAvL JCP
(2009)

But what about prediction?

$\varepsilon[\mathrm{eV}]$

$$
\varepsilon_{\lambda=1} \approx \varepsilon_{\lambda=0}+\left.\frac{\partial \varepsilon}{\partial \lambda}\right|_{\lambda=0} \Delta \lambda+\text { H.O.T. }
$$

$$
\Delta \lambda=1
$$

OAvL JCP
(2009)

Prediction?

OAvL JCP
(2009)

Prediction?

$\varepsilon[\mathrm{eV}]$

$$
\begin{gathered}
\varepsilon_{\lambda=1} \approx \varepsilon_{\lambda=0}+\left.\frac{\partial \varepsilon}{\partial \lambda}\right|_{\lambda=0} \Delta \lambda+\text { H.O.T. } \\
\Delta \lambda=1
\end{gathered}
$$

In analogy to:
Smith and van Gunsteren JCP (1994)

$$
\begin{aligned}
E^{l i n} & =E_{i}+\lambda \times\left(E_{f}-E_{i}\right) \\
& \left.=\left\langle H_{i}+f_{i f}(\lambda) \times\left(H_{f}-H_{i}\right)\right]\right\rangle \lambda \\
f_{i f}(\lambda) & =\left\{\begin{array}{lll}
0 & \text { if } & \lambda=0 \\
1 & \text { if } & \lambda=1
\end{array}\right. \\
f_{i f}(\lambda) & =a_{i f}\left(\lambda^{2}-\lambda\right)+\lambda
\end{aligned}
$$

OAvL JCP (2009)

Prediction?

$\varepsilon[\mathrm{eV}]$

$$
\begin{gathered}
\varepsilon_{\lambda=1} \approx \varepsilon_{\lambda=0}+\left.\frac{\partial \varepsilon}{\partial \lambda}\right|_{\lambda=0} \Delta \lambda+\text { H.O.T. } \\
\Delta \lambda=1
\end{gathered}
$$

In analogy to:
Smith and van Gunsteren JCP (1994)

$$
\begin{aligned}
E^{l i n} & =E_{i}+\lambda \times\left(E_{f}-E_{i}\right) \\
& \left.=\left\langle H_{i}+f_{i f}(\lambda) \times\left(H_{f}-H_{i}\right)\right]\right\rangle_{\lambda} \\
f_{i f}(\lambda) & =\left\{\begin{array}{lll}
0 & \text { if } & \lambda=0 \\
1 & \text { if } & \lambda=1
\end{array}\right. \\
f_{i f}(\lambda) & =a_{i f}\left(\lambda^{2}-\lambda\right)+\lambda
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
OAvL JCP (2009)

Drug design?

Ellipticine, intercalated between 2 Watson-Crick base-pairs w backbone, using vdW+DFT (GGA+DCACP) J Phys Chem B (2007)
OAvL, Int J Quant Chem (2013)

site vs. group	1	2	3	4	5	6
R_{1}	CH	N	SiH	P	-	-
R_{2}	CH_{3}	NH_{2}	$\mathrm{OH}^{\text {left }}$	$\mathrm{OH}^{\text {right }}$	F	Cl
R_{3}	CH_{3}	NH_{2}	$\mathrm{OH}^{\text {left }}$	$\mathrm{OH}^{\text {right }}$	F	Cl
R_{4}	CH_{2}	NH	O	SiH_{2}	PH	S
R_{5}	CH_{3}	NH_{2}	$\mathrm{OH}^{\text {left }}$	$\mathrm{OH}^{\text {right }}$	F	Cl

Prediction?

System dependent

 deěrivatives???

Help!

$$
\varepsilon[\mathrm{eV}]
$$

WANTED!
Jacob's Ladder for CCS

Erdős problems
Throughout his career, Erdős would offer US\$ prizes for solutions to unresolved problems. http://wikipedia.org

Win a prize!!!

See
www.alcf.anl.gov/~anatole For more info

An ounce of in the form of 100

 shares in iShares Trust (IAU) ---
currently worth a total of ~US\$1.7k

for the first person who presents a solution to this problem:

Find---or show non-existence of---a system independent (i.e. valid for all of CCS as defined above) interpolating function f for which two differing (iso-)electronic Hamiltonians transform such that

$$
\left.\frac{\partial E(\lambda)}{\partial \lambda}\right|_{\lambda=0}=\left\langle\frac{\partial H\left(f_{i f}(\lambda)\right)}{\partial \lambda}\right\rangle_{\lambda=0}
$$

where

$$
\begin{aligned}
0 & \leq \lambda \leq 1 \\
E(\lambda=0) & =\langle H(f(\lambda=0))\rangle=\left\langle H_{i}\right\rangle=E_{i} \\
E(\lambda=1) & =\langle H(f(\lambda=1))\rangle=\left\langle H_{f}\right\rangle=E_{f}
\end{aligned}
$$

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Schrödinger

Alchemy

1. Free energies
2. Gradients to optimize
variational (deductive)

$\frac{\partial E[H]}{\partial R_{I x}}$	$=\langle\Psi\| \frac{\partial H}{\partial R_{I x}}\|\Psi\rangle$
$\frac{\partial E[H]}{\partial Z_{I}}$	$=\langle\Psi\| \frac{\partial H}{\partial Z_{I}}\|\Psi\rangle$
$E(H(\lambda))$	$=E\left(H_{i}+\lambda\left(H_{f}-H_{i}\right)\right)$
$\frac{\partial E[H]}{\partial \lambda}$	$=\langle\Psi\| \frac{\partial H(\lambda)}{\partial \lambda}\|\Psi\rangle$

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

Correlational: Machine Learning

Google II anatoli.jeg \times d desaribe image here

ロ Q

Search
About 4 results (0.35 seconds)

Everything
Images
Maps
Videos
News
Shopping
More

Image size
160×213
No other sizes of this image found.

Pages that include matching images

| Argonne National Laboratories: Leadership Computing Facility ... |
| :---: | :--- |
| www.mcs.anl.gov/~anatole/ |
| Contact Dr. O. A. von Lilienfeld Assistant Computational Scientist at |
| Leadership Computing Facility and Fellow at Computation Institute (UofC) |
| Argonne National ... |

| 285×380 | Fellows \| Computation Institute
 www.ci.uchicago.edu/people/fellows.php
 $40+$ items - ci. jobs \|; contact us |; computing resources |; help desk ...
 lgor Aronson | Adjunct Professor
 Gyorgy |
| :---: | :--- | :--- |
| Babnigg Asst. Bioinformatics Specl/Biochemist Biosciences | | |
| Division | | |

O. Anatole von Lilienfeld | Argonne Leadership Computing Facility https://www.alcf.anl.gov/staff-directory/o-anatole-von-liiienfeld The Argonne Leadership Computing Facility (ALCF) is a DOE leadership computing facility. The ALCF provides the computational science community 500×545 w with a ...

Visually similar images - Report images

Correlational: Machine Learning

Google
Search

Everything
Images
Maps
Videos
News
Shopping
More Search by image Visually simila
More sizes More sizes

Any time Past hour Past 24 hours Past week Past week
Past month Past year Past year
Custom range..

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Vapnik
$\left\{Z_{I}, \mathbf{R}_{I}\right\} \xrightarrow{H \Psi} E$

$\left\{Z_{I}, \mathbf{R}_{I}\right\} \xrightarrow{\text { ML }} E$

Infer solution by comparison to previous examples

- Regression method?
- Function?
- Variables?
- Metric?
- Data?
$\left\{Z_{I}, \mathbf{R}_{I}\right\} \stackrel{\text { ML }}{\longmapsto} E$

Non-linear function

$$
E^{e s t}(\mathbf{M})=\sum_{i} \alpha_{i} e^{-\frac{d\left({\left.\mathbf{M}, \mathbf{M}_{i}\right)^{2}}_{2 \sigma^{2}}^{2}\right.}{} .}
$$

$\left\{Z_{I}, \mathbf{R}_{I}\right\} \stackrel{\text { ML }}{\longmapsto} E$

Non-linear function

$$
E^{e s t}(\mathbf{M})=\sum_{i} \alpha_{i} e^{-\frac{d\left({\left.\mathbf{M}, \mathbf{M}_{i}\right)^{2}}_{2 \sigma^{2}}^{2}\right.}{} \text {. }}
$$

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

$\left\{Z_{I}, \mathbf{R}_{I}\right\} \stackrel{\text { ML }}{\longmapsto} E$

Non-linear function

$$
E^{e s t}(\mathbf{M})=\sum_{i} \alpha_{i} e^{-\frac{d\left(\mathbf{M}, \mathbf{M}_{i}\right)^{2}}{2 \sigma^{2}}}
$$

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length

$$
M_{I J}= \begin{cases}0.5 Z_{I}^{2.4} & \forall I=J \\ \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall I \neq J\end{cases}
$$

Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- sort/diagonalize
- fill up w zeros

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

$\left\{Z_{I}, \mathbf{R}_{I}\right\} \stackrel{\text { ML }}{\longmapsto} E$

Non-linear function

$$
E^{e s t}(\mathbf{M})=\sum_{i} \alpha_{i} e^{-\frac{d\left(\mathbf{M}, \mathbf{M}_{i}\right)^{2}}{2 \sigma^{2}}}
$$

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length

$$
M_{I J}= \begin{cases}0.5 Z_{I}^{2.4} & \forall I=J, \\ \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall I \neq J .\end{cases}
$$

Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- sort/diagonalize
- fill up w zeros

Euclidean distance

$$
d\left(\mathbf{M}, \mathbf{M}_{i}\right)=\sqrt{\sum_{I J}\left|M_{I J}-M_{I J}^{(i)}\right|^{2}}
$$

GDB: All organic molecules up to 13 atoms

Fink, Bruggesser, Reymond ACIE (2005), Blum, Reymond JACS (2009)

1. 7 k compositional \& constitutional isomers
2. Initial coordinates from universal force field [Goddard et al JACS (1992)]
3. Relax geometry with DFT
4. Calculate atomization energies

$\Delta E^{\mathrm{ref}}\left[10^{3} \mathrm{kcal} / \mathrm{mol}\right]$

$\min _{\alpha} \quad \sum_{i}\left(E^{e s t}\left(\mathbf{M}_{i}\right)-E_{i}^{r e f}\right)^{2}+\lambda \sum_{i} \alpha_{i}^{2}$

$\Delta E^{\mathrm{ref}}\left[10^{3} \mathrm{kcal} / \mathrm{mol}\right]$

$\min _{\alpha} \quad \sum_{i}\left(E^{e s t}\left(\mathbf{M}_{i}\right)-E_{i}^{r e f}\right)^{2}+\lambda \sum_{i} \alpha_{i}^{2}$

$$
\alpha=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{E}^{r e f}
$$

$$
k\left(\mathbf{M}, \mathbf{M}^{\prime}\right)=\exp \left(-\frac{d\left(\mathbf{M}, \mathbf{M}^{\prime}\right)^{2}}{2 \sigma^{2}}\right)
$$

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Matthias Rupp, ${ }^{1,2}$ Alexandre Tkatchenko, ${ }^{3,2}$ Klaus-Robert Müller, ${ }^{1,2}$ and O. Anatole von Lilienfeld ${ }^{4,2, *}$
${ }^{1}$ Machine Learning Group, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Germany
${ }^{2}$ Institute of Pure and Applied Mathematics, University of California Los Angeles, Los Angeles, California 90095, USA
${ }^{3}$ Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
${ }^{4}$ Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 15 June 2011; published 31 January 2012)

We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid densityfunctional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of $\sim 10 \mathrm{kcal} / \mathrm{mol}$. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Matthias Rupp, ${ }^{1,2}$ Alexandre Tkatchenko, ${ }^{3,2}$ Klaus-Robert Müller, ${ }^{1,2}$ and O. Anatole vo Lilienfeld ${ }^{4,2, *}$
${ }^{1}$ Marhino I onrnino Grown Torhnical IInivorsitu, of Rorlin Franllinctr 28/70 10587 Rorlin Gormand,

PRL 109, 059801 (2012)
PHYSICAL REVIEW LETTERS
3 AUGUST 2012

Comment on "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on density functional theory (DFT)
Jonathan E. Mousse*
Candia National Laboratories Albuquerque, New Mexico 87185, USA

FIG. 2 (color online). A continuous deformation of acetylene. (left) Hydrogen atoms follow the closed curve with the line connecting them fixed to the origin. Carbon atoms remain near their equilibrium positions. (right) Atomization energy as a function of the H -origin- C angle.
ni ivan iva

$$
\begin{aligned}
& M_{I J}= \begin{cases}0.5 Z_{I}^{2.4} & \forall \\
\frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall\end{cases} \\
& \begin{array}{l}
\mathrm{N}=4 \\
->3^{*} \mathrm{~N}-6=6 \text { degrees of freedom }
\end{array}
\end{aligned}
$$

Coulomb-matrix

- unique -???
- translation
- rotation
- symmetry
- diagonalize
- fill up w zeros

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Matthias Rupp, ${ }^{1,2}$ Alexandre Tkatchenko, ${ }^{3,2}$ Klaus-Robert Müller, ${ }^{1,2}$ and O. Anatole vo Lilienfeld ${ }^{4,2, *}$
${ }^{1}$ Marhino I onrnino Grown Torhnical IInivorsitu, of Rorlin Franllinctr 28/70 10587 Rorlin Gormand,

PRL 109, 059801 (2012)
PHYSICAL REVIEW LETTERS
3 AUGUST 2012

Comment on "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on density functional theory (DFT)
Jonathan E. Mousse*
Candia National Laboratories Albuquerque, New Mexico 87185, USA

FIG. 2 (color online). A continuous deformation of acetylene. (left) Hydrogen atoms follow the closed curve with the line connecting them fixed to the origin. Carbon atoms remain near their equilibrium positions. (right) Atomization energy as a function of the H -origin- C angle. LiN Lviv invar distributions

$$
\begin{aligned}
& M_{I J}= \begin{cases}0.5 Z_{I}^{2.4} & \forall \\
\frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall\end{cases} \\
& \begin{array}{c}
\mathrm{N}=4 \\
->3^{*} \mathrm{~N}-6=6 \text { degrees of freedom }
\end{array}
\end{aligned}
$$

$\forall I=J, \quad$ Coulomb-matix $\forall I \neq J . \quad$ - translation

- rotation
- symmetry
- diagonalize sort
- fill up w zeros

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Matthias Rupp, ${ }^{1,2}$ Alexandre Tkatchenko, ${ }^{3,2}$ Klaus-Robert Müller, ${ }^{1,2}$ and O. Anatole von Lilienfeld ${ }^{4,2, *}$
${ }^{1}$ Marhino I oarnino Gmon Torhnical IInivorsitu, of Rorlin Franllinctr $78 / 70$ 10587 Rorlin Gormanv,

PRL 109, 059801 (2012)
PHYSICAL REVIEW LETTERS
3 AUGUST 2012

Comment on "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on d

PRL 109, 059802 (2012)
PHYSICAL REVIEW LETTERS

FIG. 1 (color online). Blue line: PBE0. Red dots: ML model using Frobenius norm of, and trained on, Coulomb matrices of geometries corresponding to JEM's example.

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Matthias Rupp, ${ }^{1,2}$ Alexandre Tkatchenko, ${ }^{3,2}$ Klaus-Robert Müller, ${ }^{1,2}$ and O. Anatole von Lilienfeld ${ }^{4,2, *}$
${ }^{1}$ Marhino I onrnino Groun Torhnical IInivorsitu, of Rorlin Franllinctr 28/70 10587 Rorlin Gormanv,

week ending
3 AUGUST 2012
Comment on "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

In a recent Letter [1], the authors construct a machine learning (ML) model of molecular atomization energies, which they compare to bond counting (BC) and the PM6 semiempirical method [2]. However, their ML model was trained and tested on density functional theory (DFT)
Jonathan E. Moussa*
Sandia National Laboratories Albuquerque, New Mexico 87185, USA Liv ivil inivui distributions

$$
\begin{aligned}
& M_{I J}= \begin{cases}0.5 Z_{I}^{2.4} & \forall \\
\frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} & \forall\end{cases} \\
& \begin{array}{c}
\mathrm{N}=4 \\
-\rightarrow 3^{*} \mathrm{~N}-6=6 \text { degrees of freedom }
\end{array}
\end{aligned}
$$

FIG. 2 (color online). A continuous deformation of acetylene. (left) Hydrogen atoms follow the closed curve with the line connecting them fixed to the origin. Carbon atoms remain near their equilibrium positions. (right) Atomization energy as a function of the H -origin- C angle.

$$
\begin{aligned}
& \forall I=J \\
& \forall I \neq J .
\end{aligned}
$$

Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- diagonalize sortmutants
- fill up w zeros

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012);
G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, NJP accepted (2013); Montavon et al NIPS proceedings (2013)

GDB: All organic molecules up to 13 atoms

Calculate 14 properties:
a. atomization energy (PBEO)
b. $2 \times$ polarizability (PBEO/SCS)
c. $6 \times \mathrm{HOMO} / \mathrm{LUMO}$ (GW/PBEO/ZINDO)

1. 7 k compositional \& constitutional isomers
2. Initial coordinates from universal force field [Goddard et al JACS (1992)]
3. Relaxed geometry with DFT
d. $2 \times I P / E A(Z I N D O)$
e. $3 \times$ Excitations (ZINDO)

(

http://www.quantum-machine.org/

Property [eV, $\left.\mathrm{A}^{\wedge} 3\right]$	Mean	MAE	Reference MAE
E (PBE0)	-67.79	0.16	$0.15^{a}, 0.23^{b}, 0.09-0.22^{c}$
α (PBE0)	11.11	0.11	0.05-0.27 ${ }^{\text {d }}, 0.04-0.14^{e}$
α (SCS)	11.87	0.07	$0.05-0.27^{f}, 0.04-0.14^{\text {g }}$
HOMO (GW)	-9.09	0.16	-
HOMO (PBE0)	-7.01	0.15	$2.08{ }^{\text {h }}$
HOMO (ZINDO)	-9.81	0.16	$0.79{ }^{h}$
LUMO (GW)	0.78	0.14	-
LUMO (PBE0)	-0.52	0.12	1.30^{h}
LUMO (ZINDO)	1.05	0.11	$0.93{ }^{h}$
IP (ZINDO)	9.27	0.18	$0.20^{l}, 0.15^{\prime}$
EA (ZINDO)	0.55	0.12	$0.16^{k}, 0.11^{l}$
$E_{1 s t}^{*}$ (ZINDO)	5.58	0.13	$0.18^{m}, 0.21^{n}$
$E_{\text {max }}^{*}$ (ZINDO)	8.82	1.07	-
$I_{\max }$ (ZINDO)	0.33	0.07	-

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, NJP accepted (2013)

Sumpter, Noid: Potential energy surfaces for macromolecules. A neural network technique Chem Phys Lett (1992)

Lorenz, Gross, Scheffler (FHI): Representing high-dimensional potentialenergy surfaces for reactions at surfaces by neural networks Chem Phys Lett (2004)

Manzhos, T. Carrington (Montreal): Using neural networks to represent potential surfaces as sums of products, J Chem Phys (2006)
Parrinello, Behler (Bochum): Generalized neural-network representation of high-dimensional potential energy surfaces, Phys Rev Lett (2010)

Csanyi (Cambridge): Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons, Phys Rev
 Lett (2010)

Henkelman (UT Austin): Optimizing transition states via kernel based machine learning, J Chem Phys (2012)

Burke (UC Irvine): Finding density functionals with machine learning, Phys Rev Lett (2012)

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Vapnik
$\left\{Z_{I}, \mathbf{R}_{I}\right\} \xrightarrow{H \Psi} E$

$\left\{Z_{I}, \mathbf{R}_{I}\right\} \stackrel{\text { ML }}{\longmapsto} E$

Infer solution by comparison to previous examples

- Regression method?
- Function?
- Variables?
- Metric?
- Data?

Property	Zxyz	CM	$\operatorname{Eig}(\mathrm{CM})$
Unique	$\sqrt{ }$	$\sqrt{ }$	\neg
First principles	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Transl. invariant	\neg	$\sqrt{ }$	$\sqrt{ }$
Rotat. invariant	\neg	$\sqrt{ }$	\checkmark
Permutat. invariant	\neg	\neg	\checkmark
Symmetry	\neg	$\sqrt{ }$	\checkmark
Size extensive	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Complete/global	\checkmark	\checkmark	\neg
Dimensionality	$4 N$	$\left(N^{2}+N\right) / 2$	N
Analytical	\checkmark	\checkmark	\checkmark
Differentiable	N.A.	$\sqrt{ }$	$\sqrt{ }$
Uniform length	\neg	\neg	\neg
Variable ranges	\checkmark	$\sqrt{ }$	$\sqrt{ }$

Descriptor

$$
P(\mathbf{r})=\sum_{I} Z_{I} e^{-a\left|\mathbf{r}-\mathbf{R}_{I}\right|^{2}}
$$

Descriptor

$$
P(\mathbf{r})=\sum_{I} Z_{I} e^{-a\left|\mathbf{r}-\mathbf{R}_{I}\right|^{2}}
$$

Aaron Knoll (TACC)

$$
\begin{aligned}
& \mathcal{F}(P)= \frac{1}{(2 a)^{3 / 2}} e^{\frac{\omega^{2}}{4 a}} \sum_{I} Z_{I} e^{i \omega^{T} \mathbf{R}_{I}} \\
& \mathcal{F} \mathcal{F}^{*}=\frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\omega^{T}\left(\mathbf{R}_{I}-\mathbf{R}_{J}\right)\right] \\
& \quad M_{I J}=Z_{I} Z_{J} \cos \left[\omega^{T}\left(\mathbf{R}_{I}-\mathbf{R}_{J}\right)\right]
\end{aligned}
$$

Descriptor

$$
\begin{aligned}
P(\mathbf{r})= & \sum_{I} Z_{I} e^{-a\left|\mathbf{r}-\mathbf{R}_{I}\right|^{2}} \\
\mathcal{F}(P) & =\frac{1}{(2 a)^{3 / 2}} e^{\frac{\omega^{2}}{4 a}} \sum_{I} Z_{I} e^{i \boldsymbol{\omega}^{T} \mathbf{R}_{I}} \\
\mathcal{F} \mathcal{F}^{*}= & \frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\boldsymbol{\omega}^{T}\left(\mathbf{R}_{I}-\mathbf{R}_{J}\right)\right] \\
& M_{I J}=Z_{I} Z_{J} \cos \left[\omega^{T}\left(\mathbf{R}_{I}-\mathbf{R}_{J}\right)\right] \\
F D & =\frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\omega \times d_{I J}\right],
\end{aligned}
$$

 $\mathrm{HHe}(\mathrm{b}), \mathrm{HC}(\mathrm{c})$, and $\mathrm{HCl}(\mathrm{d})$, for five interatomic distances d
$F D=\frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\omega \times d_{I J}\right]$,

$F D=\frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\omega \times d_{I J}\right]$,

Homometric molecules?
$F D=\frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\omega \times d_{I J}\right]$,

Homometric molecules?

$$
\sum_{J} Z_{J} e^{-b\left(d-d_{I J}\right)^{2}}
$$

$$
F D=\frac{1}{(2 a)^{3}} e^{\frac{\omega^{2}}{2 a}} \sum_{J} \sum_{I} Z_{I} Z_{J} \cos \left[\omega \times d_{I J}\right],
$$

Homometric molecules?

$$
\sum_{J} Z_{J} e^{-b\left(d-d_{I J}\right)^{2}}
$$

$R(d)=\sum_{I} Z_{I}^{2} \cos \left[\frac{1}{Z_{I}} \sum_{J} Z_{J} e^{-b\left(d-d_{I J}\right)^{2}}\right]$
OAvL, M. Rupp, A Knoll, submitted (2013), arxiv.org

$R(d)=\sum_{I} Z_{I}^{2} \cos \left[\frac{1}{Z_{I}} \sum_{J} Z_{J} e^{-b\left(d-d_{I J}\right)^{2}}\right]$
OAvL, M. Rupp, A Knoll, submitted (2013), arxiv.org

$D\left(M_{i}, M_{j}\right)=\sqrt{\int_{d=0}^{d \geq d_{I J}^{\max }} d d\left(R_{i}(d)-R_{j}(d)\right)^{2}}$

OAvL, M. Rupp, A Knoll, submitted (2013), arxiv.org

OAvL, M. Rupp, A Knoll, submitted (2013), arxiv.org

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

Thanks for your attention!

First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
OAvL, Int J Quant Chem (2013), http://onlinelibrary.wiley.com/doi/10.1002/qua.24375/abstract
http://www.quantum-machine.org/

Schweizerischer Nationalfonds FONDO NAZIONALE SVIZZERO
Swiss National Science Foundation

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

$$
H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right)=-\sum_{i} \nabla_{i}^{2}-\sum_{I, i} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{i}\right|}+\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I<J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Vapnik
$\left\{Z_{I}, \mathbf{R}_{I}\right\} \xrightarrow{H \Psi} E$

$\left\{Z_{I}, \mathbf{R}_{I}\right\} \xrightarrow{\text { ML }} E$

Infer solution by comparison to previous examples

- Regression method?
- Function?
- Variables?
- Metric?
- Data?

Data stratification

Data stratification

Misra et al JCTC (2011)

Outlook: Selection bias

P. Balaprakash and A. Vazquez and OAvL, in preparation (2013)

Outlook: Selection bias

Sequential sampling after 100 points

P. Balaprakash and A. Vazquez and OAvL, in preparation (2013)

Outlook: Selection bias
Sequential sampling after 200 points

!
$\frac{7}{2}$
$\frac{\square}{4}$
$\stackrel{\leftrightarrow}{\square}$
P. Balaprakash and A. Vazquez and OAvL, in preparation (2013)

Outlook: Selection bias

$\begin{array}{llll}0.005 & 0.020 & 0.050 & 0.200 \\ \text { root mean squared error(energy) }\end{array}$
P. Balaprakash and A. Vazquez and OAvL, in preparation (2013)

First Principles $H\left(\left\{Z_{I}, \mathbf{R}_{I}\right\}\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r})$

Thanks for your attention!

First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
OAvL, Int J Quant Chem (2013), http://onlinelibrary.wiley.com/doi/10.1002/qua.24375/abstract
http://www.quantum-machine.org/

Schweizerischer Nationalfonds FONDO NAZIONALE SVIZZERO
Swiss National Science Foundation
$d\left(\mathbf{M}, \mathbf{M}_{i}\right)=\sqrt{\sum_{I J}\left|M_{I J}-M_{I J}^{(i)}\right|^{2}}$

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)
$D\left(M_{i}, M_{j}\right)=\sqrt{\int_{d=0}^{d \geq d_{I J}^{\max }} d d\left(R_{i}(d)-R_{j}(d)\right)^{2}}$

OAvL and A Knoll, in preparation (2013)

Locality

Model becomes local at $\sim 5 \mathrm{k}$ molecules in training set

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

Correlational: Kernel Ridge Regression

$$
\begin{aligned}
& \left.0.15\right|_{0} ^{2} \\
& \min _{\alpha} \quad \sum_{i}\left(E^{e s t}\left(\mathbf{M}_{i}\right)-E_{i}^{r e f}\right)^{2}+\lambda \sum_{i} \alpha_{i}^{2} \\
& \alpha=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{E}^{r e f} \\
& k\left(\mathbf{M}, \mathbf{M}^{\prime}\right)=\exp \left(-\frac{d\left(\mathbf{M}, \mathbf{M}^{\prime}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Correlational: Regression 2

(a)
(b)
(c)
(d)
(e)
Layer Layer Layer Layer

$$
E=f_{1}^{3}\left(b_{1}^{3}+\sum_{l=1}^{5} a_{l 1}^{23} \cdot f_{l}^{2}\left(b_{l}^{2}+\sum_{k=1}^{5} a_{k l}^{12} \cdot f_{k}^{1}\left(b_{k}^{1}+\sum_{j=1}^{4} a_{j k}^{01} \cdot G_{j}\right)\right)\right)
$$

T. B. Blank, S. D. Brown, A. W. Calhoun and D. J. Doren, J. Chem. Phys., 1995, 103, 4129.
J. Behler, Phys Chem Chem Phys (2011)
G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, submitted (2012)

Transferability (no overfitting)

For training set: k-fold cross-validation

1. divide data into k blocks
2. predict each block with model trained on remaining blocks
3. average coefficients

Two nested loops for training and hyper parameter optimization

Apply to test set to measure out-of-sample performance

Correlational: Regression 2

(a)
(b)
(c)
(d)
(e)
Layer Layer Layer Layer

$$
E=f_{1}^{3}\left(b_{1}^{3}+\sum_{l=1}^{5} a_{l 1}^{23} \cdot f_{l}^{2}\left(b_{l}^{2}+\sum_{k=1}^{5} a_{k l}^{12} \cdot f_{k}^{1}\left(b_{k}^{1}+\sum_{j=1}^{4} a_{j k}^{01} \cdot G_{j}\right)\right)\right)
$$

T. B. Blank, S. D. Brown, A. W. Calhoun and D. J. Doren, J. Chem. Phys., 1995, 103, 4129.
J. Behler, Phys Chem Chem Phys (2011)
G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, NJP accepted (2013)

Deep Neural Networks

- PCA on properties for four layers
layer 0
layer 1
layer 2

G. Montavon, M. Rupp, V. Gobre, A. Vazquez, K. Hansen, A. Tkatchenko, K.-R. Müller, OAvL, NJP accepted (2013)
$d\left(\mathbf{M}, \mathbf{M}_{i}\right)=\sqrt{\sum_{I J}\left|M_{I J}-M_{I J}^{(i)}\right|^{2}}$

M. Rupp, A. Tkatchenko, K.-R. Müller, OAvL, Phys Rev Lett (2012)

Outlook: Forces

1. Interpolate binding:
```
a. \(E(f=3)=0\)
b. \(E(f=1)=E(P B E 0)\)
c. \(\quad d E / d f(f=1)=0\)
d. \(E(f=2 / 3)=0\)
```

Train on 1 k molecules

Outlook: Forces

1. Interpolate binding:

a.	$E(f=3)=0$
b.	$E(f=1)=E($ PBE 0$)$
c.	$d E / d f(f=1)=0$
d.	$E(f=2 / 3)=0$

Train on 1 k molecules
2. Test on remaining 6 k molecules MAE ~ $15 \mathrm{kcal} / \mathrm{mol}$

Outlook: Forces

1. Interpolate binding:

a.	$E(f=3)=0$
b.	$E(f=1)=E(P B E 0)$
c.	$d E / f(f(f=1)=0$
d.	$E(f=2 / 3)=0$

Train on 1k molecules
2. Test on remaining 6 k molecules MAE ~ 15kcal/mol

3. Experiment: Predict binding curve for some molecules

Outlook: Forces

[^0]: ``First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties',
 O. A. von Lilienfeld, Int J Quant Chem (2013), http://arxiv.org/abs/1209.5033

