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What is the problem?

Why are derivatives so difficult to obtain using Monte Carlo
methods?

λ

E

Δλ

Relative error in finite difference estimate of dE/dλ diverges as
∆λ→ 0.



Why do derivatives matter?

Forces are derivatives, as are other linear response
parameters.
Quick and accurate DMC derivatives of the total energy
with respect to trial function parameters would enable DMC
wavefunction optimization.
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What are the solutions?

Three main approaches to this problem are discussed in the
literature:

1 Derive and evaluate an analytic expression for the force.
2 Correlated sampling:

By using the same random numbers in the runs at λ and
λ+ ∆λ, ensure that the statistical errors in the energies at
λ and λ+ ∆λ are as similar as possible.
Statistical correlations are usually a problem; here they are
an advantage.

3 Differentiate your QMC code line by line to obtain an exact
numerical algorithm to evaluate the derivative of its output.



Analytic derivatives

The Hellmann-Feynman theorem
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The red line only follows if ĤΨ = EΨ. Otherwise you have to
keep the Pulay terms, which depend on wavefunction
derivatives.
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More precisely . . .

The HFT holds in VMC if:
the wave function has been energy optimized; and
the Hilbert space spanned by the basis set is independent
of λ.

The HFT does not hold in fixed-node DMC unless the
nodal surface is independent of λ.



Problems of the analytic approach

The naive HFT force estimator has infinite variance.
(Assaraf-Caffarel improved estimators and Filippi-Umrigar
space-warp transformations help.)

The Pulay terms are hard to evaluate in VMC.
They are even harder to evaluate in DMC, since they
depend on derivatives of the fixed-node ground state,
which is sampled but not known explicitly.
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Algorithmic differentiation

AD is well known in some fields and is becoming quite
widely used in finance, but has barely penetrated into
materials simulation.
A couple of years ago, Sorella and Capriotti (a former
physicist now working for a bank) proposed using AD to
evaluate forces and other derivatives in QMC.
Their paper was fascinating but hard to follow. This
sparked us to try to understand it.



Basic idea

Excluding control-flow statements, lines of code in a computer
program (y = 2 ∗ z; x = sin(y + z); . . .) can all be viewed as
little functions, which are fed inputs and produce outputs:

Inputs: x0

Statement 1: x1 = f 1(x0)

Statement 2: x2 = f 2(x1)

. . . . . . . . .

. . . . . . . . .

Outputs: xM = f M(xM−1)

(The vectors x0, x1, . . ., generally have different numbers of
components.)
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Forward AD

xm = f m(xm−1)

xm
i = f m

i (xm−1)

If we vary the program inputs, x0
j → x0

j + dx0
j , the variations

propagate through the program:

dx1
i =

∂f 1
i (x0)

∂x0
j

dx0
j

dx2
i =

∂f 2
i (x1)

∂x1
j

dx1
j

. . .

. . .

dxM
i =

∂f M
i (xM−1)

∂xM−1
j

dxM−1
j

(summation convention in force)



Matrix notation

dx1 = J1dx0

dx2 = J2dx1

. . .

dxM = JMdxM−1

dxM = JMJM−1 . . . J1dx0 = Jdx0

Notes
The matrices Jm need not be square; the number of active
variables changes as the program runs.
Jm depends on the vector xm−1, which describes the state
of the program (the values of all active variables) before
step m begins.



Example

Lines of code Lines of differentiated code

. . . . . .

y = 2 ∗ z dy = 2 ∗ dz
x = sin(y + 3 ∗ z) dx = cos(y + 3 ∗ z) ∗ dy + 3 ∗ cos(y + 3 ∗ z) ∗ dz
. . . . . .

if (x > 0) dy = Θ(x)dx
y = x

else
y = 0



Programming forward AD

xm
i = f m

i (xm−1)

dxm
i =

∑
j

∂f m
i (xm−1)

∂xm−1
j

dxm−1
j

For every line of the original code, add a new line to
propagate the differentials.
A single line of code normally changes only one variable
xm

i , and only a few inputs xm−1
j affect its value. The matrix

∂f m
i /∂xm−1

j is mostly the identity.
The differential lines are not much more complicated than
the original lines, so . . .

Running a code in forward AD mode is only a few times slower
than running it without AD.



Use of forward AD

Forward AD is best when the code has one input but many
outputs:

Choose dx0 = (dx0
1 ), which is a one-component vector.

Run the code in forward AD mode to obtain the vector

dxM = Jdx0 dxM
i = Ji,1dx0

1

where i ranges over all output variables.
One run of the AD code yields the derivatives of every
output xM

i with respect to the single input x0
1 .

Since dxM
i is a linear function of dx0

1 , might as well set dx0
1

to 1. The outputs dxM
i are then exactly equal to ∂xM

i /∂x0
1 .



AD in QMC

Unfortunately, in a QMC simulation, we have many inputs
(atomic positions, wavefunction parameters) but only one
output (the energy). Forward AD is very inefficient.

Need reverse or adjoint AD
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Adjoint AD

dxM = JMJM−1 . . . J1dx0 = Jdx0

For simplicity, assume that the output vector dxM = (dxM
1 )

has only one component (as in QMC).
Introduce a one-component unit row vector bx̃M and dot it
with both sides:

bx̃MdxM = bx̃MJMJM−1 . . . J1dx0

Because bx̃M is a one-component unit vector, the left-hand
side is equal to dxM

1 .



dxM
1 = bx̃MdxM = bx̃MJMJM−1 . . . J1dx0

We can obtain dxM
1 by stepping backwards through the

program, working out the quantities

bx̃M−1 = bx̃MJM

bx̃M−2 = bx̃M−1JM−1

. . .

bx̃0 = bx̃1J1

and then evaluating

dxM
1 = bx̃0dx0



Dotting bx̃0 with dx0 to obtain dxM
1 is unnecessary. Since

dxM
1 = bx̃0dx0

the components of bx̃0 are already the partial derivatives
of the single output with respect to the n0 inputs:

dxM
1

dx0
i

= bx̃0
i

One adjoint AD run generates the derivatives of the output with
respect to all inputs. (All of the forces in one go.)



Adjoint AD uses the same Jm matrices as forward AD:
First run the code forwards, generating and storing the few
non-trivial elements of each matrix.
Then use this information to step backwards, evaluating
bx̃m for decreasing values of m.

The computational effort is not much more than for forward
AD, but the memory requirements can be shocking.
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Ambitions

As far as we are able to tell, Sorella and friends have only
used AAD to evaluate derivatives of the trial wavefunction
in VMC simulations.
Tom decided to differentiate the complete DMC algorithm.
This was ambitious because the books say that Monte
Carlo algorithms in general cannot be differentiated!



System and algorithm

One electron in a 1D harmonic well.
Aim is direct DMC trial function optimization.
Trial function consisting of 25 blips. Starting function had
two unnecessary nodes.
No Metropolis rejection step.



Starting trial function
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The form of the wave function used for the single electron harmonic
well calculations. The dotted line represents the centre of the blip
function with coefficient α14, which is varied between -2.0, giving the
solid line, and 2.0, giving the dashed line.



Energy



Derivative
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Optimization
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[It is just as easy and not much slower to calculate and optimize many
derivatives simultaneously.]



Can the DMC algorithm be differentiated?

Imagine running two parallel DMC simulations with slightly
different Hamiltonians but the same starting point and
stream of random numbers.
As the difference between the two Hamiltonians tends to
zero, you have to wait longer and longer for the two
simulations to make a different branching decision.
CASINO sets the walker weights back to unity after each
branching decision. Hence, in a short run, it forces the two
infinitesimally different simulations to use the same
weights.



CASINO calculations of CO molecule
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Smooth derivatives in AD simulations

To circumvent this problem in our AD simulations, we had to
take great care to maintain the expected value of the weight
derivative across branching decisions.
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Conclusions

AAD is elegant and powerful.
Early results are quite encouraging; it might be possible to
make AAD work in a real DMC code.
The task of differentiating, say, CASINO, is terrifying. The
result would be a nightmare to maintain.
Experts suggest starting again from scratch!
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Pure DMC correlated sampling algorithm

Consider two pure DMC random walks with slightly
different Hamiltonians, Ĥ (= Ĥλ=1) and Ĥλ.
The drift-diffusion steps are

rλn+1 = rλn + vλ(rλn )τ + ξ
√
τ

Correlate the Gaussian displacements ξ. Drift velocities
and accumulated weights differ.



Advantages

Why do analytic HFT-based approaches suffer from
divergences?
All points sampled are chosen using the unperturbed
Hamiltonian. Walkers may therefore visit regions near the
perturbed nodal surface or nuclei, where the perturbed
local energy and drift velocity diverge.
Using two random walks solves this problem: each DMC
walk only visits regions of configuration space appropriate
for its own Hamiltonian.



Chaos

What about chaos? Surely the two walkers will separate
exponentially fast and the correlation between them will be lost?



Not necessarily!



Why stochastic resonance?
Fahy and Hamann (1992) showed that in some cases the
common Gaussian noise can drive initially distinct trajectories
together and keep them close. By coupling DMC configurations
by the diffusive components of their dynamics, the drift velocity

v(r) =
∇ΨT

ΨT

coheres configurations occupying concave regions of ΨT .

∇ΨT
ΨT

ΨT
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Branching

“Everyone knows that pure DMC is next to useless”

Then don’t use it!

Allow both walks to branch, but correlate the branching
decisions.



The perturbed walk branches in exactly the same way as
the unperturbed walk.
The small errors introduced can be dealt with exactly by
careful reweighting.
Rejection step can also be dealt with by reweighting.
Method has a zero-variance zero-bias principle.

(Filippi and Umrigar considered a similar method but dismissed it because they thought

the weights would accumulate horribly. In small systems, at least, this does not appear

to be the case — presumably because of stochastic resonance.)



Outline

1 Forces and other derivatives in DMC
The problem
Possible solutions

2 Algorithmic differentiation
Introduction
Forward AD
Adjoint AD
Results

3 Correlated sampling
Correlated sampling in pure DMC
Branching
Results



Symmetric stretch of the water molecule
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Stability
A common feature of reweighting approaches is an increase in the
variance of the estimator with simulation time, arising from the
exponentially diverging weights. Not here.
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Caveats

Sadly, stochastic resonance does not always occur. It
depends on the system.
In solid H, for example, we see stochastic resonance at 1
atmosphere but not at the very high pressures found in
diamond anvil cells.
The noise in the calculated finite differences is much worse
when there is no resonance.



Pressure of solid H

8 atoms in cell; Cmca structure; high density.
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Conclusions

DMC correlated sampling is by no means as hopeless as
has often been assumed.
Taking the ∆λ→ 0 limit of DMC correlated sampling yields
an algorithm to generate exact derivatives, not finite
differences.
This has some similarities to the method introduced last
year by Per, Snook and Russo. We expect it to produce
results more or less equivalent to those that would be
obtained using AD.
We are still investigating what to do when stochastic
resonance does not occur.


	Forces and other derivatives in DMC
	The problem
	Possible solutions

	Algorithmic differentiation
	Introduction
	Forward AD
	Adjoint AD
	Results

	Correlated sampling
	Correlated sampling in pure DMC
	Branching
	Results


