QMC for point defects in semiconductors and wide band-gap oxides

Elif Ertekin Mechanical Science & Engineering, University of Illinois

QMC@TTI, Vallico Sotto Italy. July 31 2013

Example: F-center Defect in MgO

Electronic Band Structure from DFT-GGA

Experimental Gap: 7.81 eV DFT Gap: 4.83 eV

Example: F-center Defect in MgO

F-center Defect: Anion (O) Vacancy

A good hint why DFT struggles with point defect calculations: point defects introduce localized states into systems that otherwise have bulk-like (delocalized) states. DFT is unable to treat both types on an even footing – we need a theory that can.

example: Nitrogen impurities in ZnO

Explore the quantum Monte Carlo approach to calculating point defect properties

Method	Computation al Scaling	Directly based on Schrödinger Equation?	Accurate Band Gap?	Accurate Total Energy?
DFT	~ CN _e ³	No	No	Sometimes
Hybrid DFT	~ 5*CN _e ³⁻⁴	No	Often	Often
DFT+U	~ CN _e ³	No	When Fitted	Sometimes
GW	~ CN _e ⁴	Yes	Often	No
QMC	~ 100*CN _e ³	Yes	Yes	Yes

Point Defect Calculations in QMC

vacancy in diamond :

• R. Hood, P. Kent, R. Needs, P. Briddon. Phys. Rev. Lett. 91 035206 (2003)

magnesium oxide :

- Schottky Defect: D. Alfe, M. J. Gillan. Phys. Rev. B Rap. Commun. 71 (2005)
- F-center defect: E. Ertekin, L. K. Wagner, J. C. Grossman, Phys. Rev. B (2013)

self-interstitials in silicon :

- Batista et al. Phys. Rev. B 74 121102 (2006)
- Leung et al. Phys. Rev. Lett. 83 (1999)
- Parker, Hennig. Phys. Stat. Sol. (2010)

vacancies, interstitials in alumimum

R. Q. Hood, P. R. C. Kent, & F. A. Reboredo. *Phys. Rev. B* 85, (2012)

insulator-to-metal transition in highly-doped silicon

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, J. C. Grossman. Phys. Rev. Lett. 108 026401 (2012).

Discussion Topics

nermal and Optical Ionization pergies of Point Defects

in Magnes.

in Zinc Oxide

Metal-Insulator Transition in Chalcogen-Hyperdoped Silicon

Elif Ertekin | Mechanical Science and Engineering

3 Properties of Interest

- Defect Formation Energies
- Thermal Ionization Energies
- Optical Ionization Energies

$$\Delta E_{f} = (E_{D,q} - E_{perf}) + \sum_{i} n_{i}\mu_{i} + q(E_{V} + E_{F})$$

$$positively charged (donor)$$
neutral
neutral
negatively charged
(donor)
neutral
negatively charged
(acceptor)
Acceptors have low formation
energies when E_{f} is low
Acceptors have low formation
energies when E_{f} is high

3 Properties of Interest

- Defect Formation Energies
- Thermal Ionization Energies
- Optical Ionization Energies

$$\Delta E_{f} = (E_{D,q} - E_{perf}) + \sum_{i} n_{i}\mu_{i} + q(E_{V} + E_{F})$$
positively charged (donor)
neutral
neutral
negatively charged
(acceptor)
Thermal ionization energies

Properties of Interest

- Defect Formation Energies
- Thermal Ionization Energies
- Optical Ionization Energies

	Pure	F	F*	F ⁺²
Mg-Mg distance (A)	2.98			
O-O distance (A)	5.96			
Relaxation Energy (eV)				

F - Center

	Pure	F	F*	F ⁺²
Mg-Mg distance (A)	2.98	2.97		
O-O distance (A)	5.96	5.97		
Relaxation Energy (eV)		0.003		

F - Center

F⁺ - Center

F+2 Pure F*: F Mg-Mg 2.98 2.97 3.09 distance (A) O-O5.96 5.97 5.89 distance (A) 0.545 Relaxation 0.003 Energy (eV)

F - Center

F⁺ - Center

F⁺² - Center

Exp: 2.3 eV

	Pure	F	F*	F ⁺²
Mg-Mg distance (A)	2.98	2.97	3.09	3.18
O-O distance (A)	5.96	5.97	5.89	5.82
Relaxation Energy (eV)		0.003	0.545	1.182

Approach for QMC: Use the DFT-optimized geometries for F, F^{+,} F⁺², and then find the corresponding energies in FN-DMC

F - Center

F⁺² - Center

	Pure	F	F*	F ⁺²		
Mg-Mg distance (A)	2.98	2.97	3.09	3.18	DFT- computed geometric parameters	
O-O distance (A)	5.96	5.97	5.89	5.82		
Relaxation Energy (eV)		0.003	0.545	1.182		

DFT description:

Optical Gap: 7.81 eV (experimental)

- Calculating of a gap requires many calculations for cells of different
 sizes in QMC, coupled with an extrapolation to infinite size
- Extrapolated value is 7.96(0.06) eV
- NB: I use a similar extrapolation scheme to obtain IP, EA

QMC description:

Thermal Ionization Energies

• Starting many-body wave functions for QMC calculations are constructed via Slater determinants, using single-particle Kohn-Sham orbitals from DFT

- In this case, both descriptions put the transition levels in the middle of the gap
- Note large difference in the range for the Fermi energy
- Charged image interaction problems

Elif Ertekin | Mechanical Science and Engineering

site-resolved charge fluctuations
$$ig\langle\psiig|ig(n_i^{}-ig\langle n_i^{}ig
angleig)^2ig|\psiig
angle$$

* Rinke, Schleife, et al., PRL 2012

Doping in Zinc Oxide

- Nitrogen : candidate for p-type ZnO
- Lots of experimental scatter in the literature
- Conventional DFT: N is a shallow acceptor in ZnO
- Hybrid functionals and GW results put the level deep in the gap

ZnO: challenging

- d-orbitals from Zn atoms, porbitals from O atoms
- d-p hybridization similar to what we heard before
- results in over-metallic
 description, and a DFT-PBE gap of
 0.74 eV (vs. 3.4 in exp)
- compare to the QMC gap of
 3.4(1) eV.

- Approach: Use the DFT-optimized geometries, and compute the corresponding energies for the N and N⁻ defects via QMC
- For now, we use DFT-based estimates of charged image interactions (obtained via finite size extrapolation)

- According to QMC, N is deep
 - defect level occurs at 1.62(0.14) eV above the VBM
- Unlike MgO, in this case QMC changes the nature of the defect
- QMC results compare favorably to recent experiments and to other high-accuracy approaches:
 - 1.3 eV (Hybrid, van de Walle 2009), 1.6 eV (GW, Lany and Zunger 2010)
- Some caveats: 48 atom supercells (finite size effects < 0.3 eV)

Discussion Topics

Thermal and Optical Ionization Energies of Point Defects

in Magnesium Oxide

in Zinc Oxide

retal-Insulator Transition in halcogen-Hyperdoped Silicon

Elif Ertekin | Mechanical Science and Engineering

Start with c-Si wafer

Experimental: Tonio Buonassisi Group, MIT, Mike Aziz (Harvard)

Micro-structured with femtosecond or nanosecond laser pulses

In the presence of a source of S, Se, or Te atoms

See: E. Ertekin, M. T. Winkler, et al., Phys. Rev. Lett. 2012.

Doping Concentration

Silicon Hyperdoped with Selenium

experimentally measured properties ...

Tull, Winkler, Mazur. App. Phys. A 96 (2009)

• Enhanced optical absorption down to photon energies $\sim 0.5 \text{ eV}$

Courtesy: Mark Winkler, Tonio Buonassisi

• Non-zero conductivity down to temperatures around T = 2K.

Band Structure/Density of States

Si₁₀₂₃Se₁

Si₂₄₉Se₁

Mott Metal Insulator Transition

Detailed mechanism for the observed behavior?

Low defect density:

- isolated, localized defect states.
- insulating character, electrons bound to impurity sites

well-characterized for shallow defects in Si: P, Al, B, etc.

or Not(t)?

On the transition to metallic conduction in semiconductors N. F. Mott, *Canadian Journal of Physics* **34** 12A pp. 1356 (1956).

Impurity State Charge Density

defect state charge density

0

Defect Formation Energies

clues to the role of electron correlation at different defect densities

- Our preliminary efforts to apply this technique to point-defects in solids MgO, ZnO, and Si give promising results that compare favorably to experiment and/or other high-accuracy methods
- They also reveal some challenges
- Future Work: (lots ... !)
 - QMC estimate of image-charge interactions
 - Application to other materials of interest
 - Physics-based studies of the DFT single vs. QMC many –particle descriptions

...THANK YOU FOR YOUR ATTENTION!

Computational resources:

Work funded by:

