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Introduction: Hexagonal Boron Nitride (I)

• H-BN: B and N atoms occupy the A and
B sublattices of a 2D honeycomb lattice.

– Atomic structure and lattice parameter
are similar to graphene.

– However, whereas pristine graphene
is a gapless semiconductor, h-BN is
an insulator because the sublattice
symmetry is broken.

• Bulk h-BN (a.k.a. white graphite): BN
layers are weakly bound together (mainly)
by van der Waals interactions.

– Gives rise to lubricating properties.
– Possible to produce monolayers of BN

by mechanical exfoliation.

• Stacking arrangement of bulk h-BN: AA′.
Each Bδ+ ion has an Nδ− vertically above it and vice versa.



Introduction: Hexagonal Boron Nitride (II)

• H-BN is the best substrate for
graphene-based electronics:

– the surfaces may be atomically
smooth;

– it is a very good insulator; and
– it has a similar lattice parameter to

graphene.

• Atomically flat BN is also a potentially
important component in novel electronic
devices based on 2D materials, e.g., high-
speed transistors and supercapacitors.

• To date, experimentalists have not succeeded in measuring the optoelectronic
properties of monolayer BN. Our knowledge of these properties is based on:

– extrapolation from experimental results for thin films (dozens of layers); and
– density functional theory (DFT) calculations.



Electronic Properties of Hexagonal Boron Nitride

• Key optoelectronic property: nature (direct or indirect) and magnitude of the
electronic band gap.

• Challenges for theory:

– Experimental results are currently unavailable.
– DFT is not reliable for determining band gaps.
– Bulk h-BN exhibits a large exciton binding energy. Estimates range from 0.149

eV (experiment plus Wannier model) to 0.72 eV (GW -Bethe–Salpeter equation).
Exciton binding is enhanced in the monolayer.

– 2D systems exhibit unpleasant finite-size effects.

• We have therefore used quantum Monte Carlo (QMC) methods as implemented in
CASINO to investigate the band structure and excitonic effects in h-BN.

– We use variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC).
– First QMC calculations of the band structure of 2D materials?

• We have investigated the effects of lattice dynamics on the band gap within DFT.



DFT Calculations (Relaxation, Lattice Dynamics, Band Structure)

• Parameters for our DFT (CASTEP) calculations:

– Exchange-correlation functionals used: LDA, PBE and hybrid HSE06.
– Artificial periodicity: 40 a.u.
– 53× 53 k-point grid in LDA and PBE band-structure calculations; 29× 29 k-point

grid in lattice-dynamics calculations; 11× 11 k-point grid in HSE06 calculations
– Plane-wave cutoff: 25 a.u. in calculations with ultrasoft pseudopotentials; 30 a.u.

in (HSE06) calculations with norm-conserving pseudopotentials.
– Finite displacements to evaluate force constants: 0.08 a.u.

• Replacing ultrasoft with norm-conserving pseudopotentials changed the DFT-PBE
K → Γ and K → K gaps from 4.69 to 4.76 eV and 4.67 to 4.79 eV, respectively.

– Uncertainty in gap due to pseudopotential: ∼ 0.1 eV. Small, but makes the
difference between predicting direct and indirect gaps.

– Dirac-Fock pseudopotentials used in our QMC calculations give similar DFT gaps
to the norm-conserving pseudopotentials.

– DFT-PBE lattice parameter changes from 2.512 to 2.487 Å when the ultrasoft
pseudopotential is replaced by a norm-conserving pseudopotential.



Nuclear Contribution to the Band Gap (I)

• Born–Oppenheimer approximation: electronic wave functions and energies depend
parametrically on nuclear positions; electronic total energy acts as a potential in
which the nuclei move.

– When an electron is excited, the B.–O. potential surface abruptly changes.
– Suppose we are at zero temperature, so all phonon modes are in their ground state.
– Nuclear contribution to total energy: zero-point energy (ZPE) of phonon modes.
– Provided the overlap between the ground-state nuclear wave functions in the

electronic ground state and excited state is non-negligible, the phonon-renormalised
gap is the difference between the total energy including phonon ZPE in the ground
state and the total energy including ZPE in the electronic excited state.

• To calculate the nuclear zero-point energy (ZPE) contribution to the band gap:

– Perform DFT lattice dynamics calculation in the electronic ground state.
– Perform DFT lattice dynamics calculation in the electronic excited state.
– Difference in ZPEs gives nuclear correction to band gap at zero temperature.



Nuclear Contribution to the Band Gap (II)

• We used the method of finite displacements in a 3 × 3 supercell and with an n × n
k-point grid in the supercell, including Γ.

• For the electronic excited state, we swapped the occupancies of the ground-state
highest occupied and lowest unoccupied band.

• Taking the difference of the total ZPEs in the 3n× 3n supercell corresponding to the
unfolded k points gives the phonon contribution to the electronic excitation energy.

• The promotion of the electron from the highest occupied to the lowest unoccupied
band at Γ in the 3 × 3 supercell corresponds to a promotion at K in the Brillouin
zone of the primitive cell; thus the phonon contribution to the gap calculated above
is the correction to the K → K gap.

• Assume the phonon corrections for K → Γ are similar.

• The calculations used norm-conserving DFT pseudopotentials, the PBE exchange-
correlation functional, a plane-wave cutoff energy of 40 a.u. and finite displacements
of 0.08 a.u.



Evaluating Quasiparticle and Excitonic Gaps in QMC (I)

• To calculate excitation energies using QMC: take differences of total energies
obtained with trial wave functions that correspond to the ground state or an excited
state.

– Exploits the fixed-node approximation.
– Choose orbital occupancy to get appropriate excited-state wave functions.

• Quasiparticle bands for unoccupied states: Ei(k) = E+(k, i)− EGS, where E+(k, i)
is the total energy when an electron is added to band i at k and EGS is the
ground-state energy.

• Quasiparticle bands for occupied states: Ei(k) = EGS − E−(k, i), where E−(k, i) is
the total energy when an electron is removed from band i at k.

• Quasiparticle band gap: difference of the energy bands at conduction-band minimum
(CBM) and valence-band maximum (VBM):

∆qp = ECBM − EVBM = E+
CBM + E−

VBM − 2EGS.



Evaluating Quasiparticle and Excitonic Gaps in QMC (II)

• Excitonic gap: energy difference when an electron is promoted from VBM to CBM:

∆ex = Epr
VBM→CBM − EGS,

where Epr
VBM→CBM is the total energy evaluated with a trial wave function in which

the VBM orbital has been replaced by the CBM.

• DMC retrieves a large but finite fraction of the correlation energy.

– Hartree–Fock theory: band gaps are significantly overestimated.
– Assume the fraction of correlation energy retrieved in the ground state is similar

to the excited state: the DMC gaps are upper bounds.
– If we increase the fraction of correlation energy retrieved, e.g., by including a

backflow transformation, we expect to see a decrease in the energy gap.



DMC for Excited States

• DMC for the lowest-energy eigenfunction that has the same symmetry as the trial
wave function, provided that the trial wave function transforms as a 1D irreducible
representation of the symmetry group of the Hamiltonian:

– Variational principle for DMC energy: fixed-node error in energy is (i) positive and
(ii) second order in the error in the nodal surface.

– Zero-variance principle: if trial wave function is exact, all local energies are equal
to the energy eigenvalue.

• DMC for a general excited state:

– No variational principle: fixed-node error can be either positive or negative. Error
is first order in the error in the nodal surface.

– Energy expectation with a Slater(–Jastrow(–backflow)) trial wave function
constructed using an appropriate set of orbitals will exceed the excited-state
energy. Hence we expect the fixed-node error will be positive in general.

– Still have zero-variance principle.

• So DMC “works” for excited states.



Trial Wave Functions, Etc. (I)

• We used Slater-Jastrow (SJ) wave functions:

– DFT-PBE orbitals from CASTEP were re-represented in blips (i) to improve the
scaling and (ii) to discard the artificial periodicity in the out-of-plane direction.

– Jastrow factor: electron–electron (isotropic polynomial plus 2D plane wave
expansion), electron–ion and electron–electron–ion terms were optimised by
unreweighted variance minimisation.

– Bitter experience: wave functions optimised by unreweighted variance minimisation
are less likely to result in population explosions in DMC than wave functions
optimised by energy minimisation.

• All DMC gaps have been linearly extrapolated to zero time step (using time steps of
0.01 and 0.04 a.u.).

• We used the ground-state Jastrow factor (and backflow function) in excited states.

– Fixed-node DMC energy does not depend on the Jastrow factor.
– Relaxation of backflow in an excited state is a manifestation of finite-size error.



Trial Wave Functions, Etc. (II)

• We performed test calculations with Slater-Jastrow-backflow wave functions:

– SJB wave functions were optimised by energy minimisation.
– Backflow reduces the DMC gaps by a small amount [0.10(3) eV on average].
– VMC and DMC results in a 3× 3 cell:

EGS σ2
GS QP gap (eV) Exc. gap (eV)

Method
(eV/p. cell) (a.u.) K → Γ K → K K → Γ K → K

HFVMC −341.961(4) 21.39 2.63(8) 5.95(8) 7.13(5) 7.65(5)
SJ-VMC −349.8780(4) 3.18 2.559(9) 4.593(9) 7.118(6) 6.378(5)
SJB-VMC −350.229(2) 2.11 2.55(4) 4.46(4) 7.18(2) 6.30(2)
SJ-DMC −350.747(4) N/A 1.02(9) 4.22(8) 6.08(4) 6.29(4)
SJB-DMC −350.857(2) N/A 0.86(4) 4.09(4) 6.04(2) 6.22(2)

• The fraction of SJB-DMC correlation energy retrieved at the SJ-VMC or SJB-VMC
level is much smaller for excited states than the ground state.

– Undermines our assumption that the quality of our calculations is similar in the
ground state and excited state.



Comparison of VMC and DMC Gap Results

• VMC is cheaper than DMC, by
a factor of more than 50.

• Whereas fixed-node DMC total
energies (and hence gaps) are
independent of the Jastrow
factor, this is not true of VMC.

• Nevertheless, any effect of not
reoptimising the Jastrow factor
in excited states is a form of
finite-size error.
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• The VMC gaps are generally larger than the DMC gaps, as expected.

• Although the VMC and DMC gaps show the same finite-size behaviour, the VMC
results cannot be used to extrapolate the DMC gaps to the thermodynamic limit,
even though VMC results can be obtained for substantially larger system sizes.



Singlet and Triplet Excitonic States

• We have calculated the SJ-DMC energy differences between the singlet and triplet
excitonic states in 3× 3 supercells of BN.

• We used single-determinant trial wave functions in which an electron was promoted
without and with a spin-flip.

• We used the set of orbitals obtained in a non-spin-polarised ground-state DFT-PBE
calculation together with the Jastrow factor optimised in the ground state.

• The singlet excitonic state for a promotion from K → K is 0.12(2) eV lower in
energy than the triplet state.

• For K → Γ, the triplet excitonic state is lower in energy by 0.02(2) eV (insignificant).

• Apart from these tests, all the calculations reported in this article were performed
using singlet excitonic states.



Finite-Size Effects (I)

• Although the asymptotic behaviour of the ground-state energy as a function of system
size in a 2D-periodic system is known, the asymptotic form of the finite-size error in
the band gaps is unknown.

• We used a range of simulation cell sizes, from 2× 2 to 9× 9 primitive cells.

• Different choices of simulation-cell Bloch vector ks allow one to obtain different
points on the band structure in a finite cell:

– For a 3n× 3n supercell with ks = 0, the orbitals include bands at both Γ and K.
One can make additions or subtractions at Γ or K and promote electrons either
from K to Γ or from K to K.

– Otherwise, one can choose ks so that the orbitals at Γ are present, or the orbitals
at K, but not both.

– Hence it is only possible to calculate the K → Γ excitonic gap in 3n×3n supercells.
– The quasiparticle gap from K → Γ can always be calculated for a given supercell

size by determining the CBM and VBM using two different values of ks.



Finite-Size Effects (II)

• In these preliminary results we have assumed the finite-size error is inversely
proportional to the linear size of the cell.

– This is a plausible finite-size scaling that is not obviously inconsistent with the
results shown in the figure.

– To-do: work out what the scaling ought to be. Answers on a postcard, please.

• It is likely that the excitonic gap will behave differently as a function of system size
once the linear size of the simulation cell exceeds the exciton Bohr diameter.

– When the simulation cell is small, the exciton is artificially compressed, leading to
an overestimate of the binding energy.



Results: Lattice Parameter and Dynamical Stability (I)

Method Lattice parameter (Å)
DFT-LDA 2.491
DFT-PBE 2.512
DFT-HSE06 2.45
Exp. (bulk) 2.5040
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• We used the DFT-PBE
lattice parameter in all our
QMC calculations.

• Phonon dispersion curve
was obtained using DFPT.

– LO branch ought to go
linearly to TO frequency
at Γ; the fact that it does
not is due to the artificial
periodicity.

• There is a small (spurious)
region of dynamical
instability at Γ, which
depends on plane-wave
cutoff, k-point sampling,
etc.



Results: DFT Band Structures
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Results: Band Effective Masses (I)

• We fitted

E(k) = E0 ±
k2

2m
+Ak4 +Bk6 + Ck6 cos(6θ) +Dk3 cos(3θ) + Ek5 cos(3θ),

to the valence and conduction bands within a circle of radius 10% of the Γ–M
distance around the K point, where k is the wavevector relative to the K point.

– The root-mean-square residual over this area is less than 0.3 meV in each case.

• We fitted

E(k) = E0 ±
k2

2m
+Ak4 +Bk6 + Ck6 cos(6θ),

to the conduction band within a circle of radius 40% of the Γ–M distance about Γ.

– RMS residual over this area is less than 0.3 meV.
– It is clearly much easier to represent the band over a large area around Γ than K.

• The band edge and effective mass are unchanged when the radius of the region used
for the fit is reduced.



Results: Band Effective Masses (II)

Method Band Location E0 m
DFT-LDA Cond. Γ 0.00397 0.96
DFT-LDA Cond. K −0.00327 0.89
DFT-LDA Val. K −0.172 0.61
DFT-PBE Cond. Γ 0.00919 0.95
DFT-PBE Cond. K 0.00838 0.90
DFT-PBE Val. K −0.163 0.63
DFT-HSE06 Cond. Γ 0.0471 0.98
DFT-HSE06 Cond. K 0.0711 1.07
DFT-HSE06 Val. K −0.161 0.63



Mott–Wannier Model of Excitonic Effects

• Mott–Wannier binding energy of an exciton in 2D: Eex = −2µ/ϵ2, where µ =
memh/(me +mh) is the exciton reduced mass and me and mh are the electron and
hole masses, respectively.

• Corresponding exciton Bohr radius: aex = ϵ/µ.

• Experimental static in-plane dielectric constant of bulk h-BN: ϵ = 6.85. Assume the
dielectric constant for monolayer BN to be similar.

Method Excitation Bohr rad. (Å) Bind. en. (eV)
DFT-LDA K → Γ 9.74 −0.433
DFT-LDA K → K 10.0 −0.420
DFT-PBE K → Γ 9.58 −0.439
DFT-PBE K → K 9.79 −0.430
DFT-HSE06 K → Γ 9.47 −0.445
DFT-HSE06 K → K 9.15 −0.460

• Wigner–Seitz cell radius of largest supercell used (9× 9): 9.26 Å.



Renormalisation of the Gap due to Electron–Phonon Coupling

• Nuclear motion causes a small but significant reduction in the electronic band gap.

– The gap renormalisation shows great sensitivity to the number of k points used in
the 3× 3 supercell. No real evidence of convergence.

– Perhaps of the order −0.3 eV.
– To-do: use the approach described by Bartomeu. Ought to agree. . .
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Finite-Size Effects

• Finite-size
extrapolation with
guess at exponent. . .

• Excitons are unbound
in small cells.

– They are bound in
the infinite system
limit (as one would
rather hope).

– They become
bound once the
cell size becomes
comparable with the
estimated exciton
Bohr diameter.
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Energy-Gap Results

• We find the gap of monolayer BN to be indirect (K → Γ) and about 7.2 eV.

• Experiment for single-crystal h-BN with around 15 layers: find a direct (K → K)
gap of 5.9 eV in single-crystal BN with around 15 layers.

Quasiparticle gap (eV) Excitonic gap (eV)
Method

K → Γ K → K K → Γ K → K
DFT-LDA 4.79 4.60 N/A N/A
DFT-PBE 4.69 4.67 N/A N/A
DFT-HSE06 5.65 6.31 N/A N/A
GW 7.00 7.70 N/A N/A
DMC 9.5(1) 10.4(2) 7.5(3) 8.7(3)

• In the thermodynamic limit the excitonic gaps lie below the quasiparticle gaps, as
expected.

• The exciton binding is large: 1.7(4) eV for K → K and 2.0(3) eV for K → Γ.



Conclusions

• We have performed DFT and QMC calculations to determine the electronic structure
of monolayers of hexagonal BN, as an example of a 2D material.

• We find the QP gap to be indirect (K → Γ) and of magnitude 9.5 eV.

• We find that monolayer BN exhibits a very large exciton binding energy of about 2
eV.

• Not much agreement between DFT, GW or QMC.
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