

Quantum Monte Carlo Simulation of van der Waals Systems

Anouar Benali¹, Luke Shulenburger², Nichols A. Romero¹, Jeongnim Kim³, O. Anatole von Lilienfeld¹

1- Argonne National Laboratory - Argonne, IL, USA

2- Sandia National Laboratories - Albuquerque, NM, USA

3- Oak Ridge National Laboratory - Oak Ridge, TN, USA

Contact: benali@anl.gov

QMCPACK Simulation Suite

-	Jeongnim Kim.	ORNL (Formerly UIUC)
-	David Ceperley	UIUC
-	Luke Shulenburger	SNL
-	Ken Esler	Stoneridge(Formerly UIUC)
-	Miguel Morales	LLNL
-	Jeremy McMinis	LLNL
-	Nichols Romero	ANL
-	Anouar Benali	ANL

[1] J. Kim *et al.* J. of Phy. - Conf. Series. (2012) vol. 402, no. 1, 012008
[2] K. P. Esler *et al.* Comp. in Sci. and Eng. (2012) vol. 14, no. 1, 40.
[3] J. Kim et al. "Qmcpack simulation suite."

IBM Blue Gene/Q Mira @ Argonne National Laboratory

Mira: next-generation supercomputer

48 racks
1,024 nodes per rack
16 cores per node
64 threads per node
16GB memory/node
1.6GHz 16-way core processor
240 GB/s, 35 PB storage

supercomput

Gene Q

Blue

786k cores 8.15 PF/s

BGQ - High Performance features

Quad FPU (QPU) DMA unit List-based prefetcher TM (Transactional Memory) SE (Speculative Execution) Wakeup-Unit Scalable Atomic Operations

Intrinsic:

TYPE: vector4double A; Loads and stores Unary operations Binary operations Multiply-add operations Special functions Instruction Extensions (QPX) to PowerISA 4-wide double precision FPU SIMD (BG/L,P are 2-wide) usable as: scalar FPU 4-wide FPU SIMD 2-wide complex arithmetic SIMD Attached to AXU port of A2 core – A2 issues one instruction/cycle to AXU 8 concurrent floating point operations (FMA) + load +store 6 stage pipeline Permute instructions to reorganize vector data supports a multitude of data alignments 4R/2W register file 32x32 bytes per thread 32B (256 bits) data path to/from L1 cache

With four multiply-add units, the quad FPU can perform eight double-precision floating-point operations per cycle. The processor can execute up to eight double-precision floating-point operations, based on a fused multiply-add (FMA), along with an FP load and an FP store in a single cycle.

Processor The performance comes from the quad pipe Eloating point unit - Each cycle, the quad FPU, can serve as a simple scalar FPU or a four wide SIMD Date Blue GeneFPU, or itpravepector two complex arithmetic SHAD operations 2004 Procession for these of the second se Peak FP Perf Date 13.6 gigaflops 5.6 gigaflops PowerPC_450 850MHz 700MHz Blue Gene/P 2007 PowerPC 440 2004 Blue Géne/L Blue Cone /0 $1600MH_{7}$ 2012 $PoworDC \Lambda 2$ 10 205 gigaflone

Einspline

Eval_z:

Evaluation of spline coefficients (complex)

```
for (i = 0; i < 64; i++)
  s = d[i];
  p = (double *)coefs[i];
  for (n = 0; n < M - rem; n = n + 8)
      double a0, a1,.., a7;
      double b0, b1, ..., b7;
      a0 = v[n+0];
     //code
      a7 = v[n+7];
     b0 = p[n+0];
     //code
     b7 = p[n+7];
     //operations
      a0=a0+s*b0;
      . .
     v[n+0]=a0;
       • •
```

Using QPX

```
for ( i = 0; i < 64; i++ ) {
    s = d[i];</pre>
```

```
p = (double *)coefs[i];
vector4double t = { s, s, s, s };
for ( n = 0; n < M - rem ; n = n + 8) {
  vector4double f0, f1;
  vector4double g0, g1;
```

```
g0 = vec_ld( j, p );
g1 = vec_ld( j+32, p );
f0 = vec_ld( j, v );
f1 = vec_ld( j+32, v );
f0 = vec_madd( t, g0, f0 );
f1 = vec_madd( t, g1, f1 );
vec_st( f0, j, v );
vec st( f1, j+32, v );
```

QMC Modelization

The many-body trial wavefunction

$$\Psi_T(R) = J(R)\Psi_{AS}(R) = e^{J_1 + J_2 + \dots} \sum_{k=1}^{M} C_k D_k^{\uparrow}(\phi) D_k^{\downarrow}(\phi)$$

Correlation (Jastrow)

$$J_{1} = \sum_{i}^{N} \sum_{l}^{N_{ions}} u_{1}(|r_{i} - r_{l}|)$$

$$J_2 = \sum_{i \neq j}^N u_2 \left(\left| r_i - r_j \right| \right)$$

Anti-symmetric function (Pauli principle)

$$D_{k}^{\sigma} = \begin{vmatrix} \phi_{1}(r_{1}) & \cdots & \phi_{1}(r_{N^{\sigma}}) \\ \vdots & \ddots & \vdots \\ \phi_{N^{\sigma}}(r_{1}) & \cdots & \phi_{N^{\sigma}}(r_{N^{\sigma}}) \end{vmatrix}$$

Single-particle orbitals $\phi_{i} = \sum_{l}^{l=N_{b}} C_{l}^{i} \Phi_{l}$

Basis sets: molecular orbitals, plane-wave, grid-based orbitals...

Many methods of approximating the plane-wave-represented single-particle orbitals with polynomials:

-B-spline approximation in QMC, report significant reduction in time of calculation while maintaining plane-wave-level accuracy

 Φ_{I}

Profiling

System:

- Ar Solid 32 atoms 256 electrons B-splines representation of WF (1.9Gb) :
- 256 nodes 32 threads 2 Walkers per thread

Profile with original version of QMCPACK

Flat profile:		
Total run time: 53min40		
Each sample counts as 0.01 seconds.	Evaluation of spline, gradient and	
% cumulative self self total		nessian coefficients (complex)
time seconds seconds calls Ts/call	Ts/call name	
56.95 58369.57 58369.57	.eval_multi_UBspline_3d_z_vg	h
14.02 72738.82 14369.25	.eval_multi_UBspline_3d_z	Evaluation of colina
2.11 77918.51 2161.01	SymmetricDTD	coefficients (complex)
1.70 79663.07 1744.56	EinsplineSetExtended::evaluate	

71% of the application time spent in the Spline evaluation of the Wave Function

Optimization

-> 2 algorithms accessing memory horizontally or vertically over the {Points in space; minicube around the point}

Important reduction of the number of arithmetic operations

-> Complete rewriting of the functions with QPX intrinsics

- Increase of the number of floating point operations
- Reduction of the number of cycles per operation

-> Manual memory prefetching when possible

Increase the availability of data in the L1 cache

Profiling

Coefficients (type)

- Eval_Z Complex Double
- Eval_D Double
- Eval_S Float

Coefficients, Gradients, Hessian (type)

Eval_Z_VGH	Complex Double
Eval_D_VGH	Double
Eval_S_VGH	Float

Speed up	Eval_Z	Eval_D	Eval_S	Eval_Z_VGH	Eval_D_VGH	Eval_S_VGH
Algorithm B	0.38	0.81	0.39	1.59	0.93	1.62
Algorithm M	2.48	0.91	1.02	2.15	1.01	0.95

Algorithm (X)	3.94	1.08	1.26	7.62	1.58	1.31
with QPX	(Algo. M)	(Algo. M)	(Algo. M)	(Algo. B)	(Algo.B)	(AlgoB)
QPX + Prefetch	4.25	1.23	1.81	-	-	-

Profiling

System:

- Ar Solid 32 atoms 256 electrons Bsplines WF (1.9Gb) :
- 256 nodes 32 threads 2 Walkers per thread

Profile with QPX and Prefetch

Flat profile: **Total run time: 20min03** Each sample counts as 0.01 seconds. % cumulative self time seconds seconds **14.08** 5380.43 5380.43 **.ev 8.25** 12270.83 3152.52 **.ev** 5.68 14441.45 2170.62 .Sy 4.85 16292.97 1851.52 Ein

.eval_multi_UBspline_3d_z_vgh
.eval_multi_UBspline_3d_z
.SymmetricDTD
EinsplineSetExtended::evaluate

Profile with Original Algoritm

Flat profile: **Total run time: 53min40** Each sample counts as 0.01 seconds. % cumulative self time seconds seconds **56.95** 58369.57 58369.5 **14.02** 72738.82 14369.25 2.11 77918.51 2161.01 uate 1.70 79663.07 1744.5

Total run time Speedup of 2.68 times

HPM PROFILING

Original Code

27.644.290.379.027All XU Instruction22.786.190.220.714All AXU Instruction43.043.218.198.088FP Operations Group 1

```
Derived metrics for code block "mpiAll" averaged
over process(es) on node <0,0,0,0,0>:
Instruction mix: FPU = 45.18 %, FXU = 54.82 %
Instructions per cycle completed per core =
0.6138
Per cent of max issue rate per core = 33.65 %
Total weighted GFlops for this node = 13.412
Loads that hit in L1 d-cache = 94.03 %
L1P buffer = 5.36 %
L2 cache = 0.35 %
DDR = 0.26 %
DDR traffic for the node: ld = 1.508, st =
0.540, total = 2.049 (Bytes/cycle)
```

BGQ optimized Code

```
8.581.366.867.332 All XU Instruction
4.896.512.230.816 All AXU Instruction
13.017.533.928.058 FP Operations Group 1
```

```
Derived metrics for code block "mpiAll" averaged
over process(es) on node <0,0,0,0,0>:
Instruction mix: FPU = 36.33 %, FXU = 63.67 %
Instructions per cycle completed per core =
0.4417
Per cent of max issue rate per core = 28.12 %
Total weighted GFlops for this node = 10.922
Loads that hit in L1 d-cache = 88.60 %
L1P buffer = 5.92 %
L2 cache = 4.50 %
DDR = 0.98 %
DDR traffic for the node: ld = 3.503, st =
1.101, total = 4.604 (Bytes/cycle)
```

Percentage of peak= 6.55%

Percentage of peak= 5.33%

Total run time Speedup of 2.68 times

QMCPACK - performance on Blue Gene/Q

Application speedup using QPX and prefetching is **2.68** folds from original Algorithm.

Overall Scaling on LCF Architectures

Applications on van der Waals dominated systems

Objectives

Van der Waals forces are important

-> Noble gases are proto-typical! We use Ar as a case of principle.

- London (C₆/R⁶) widely used in force fields (Lennard-Jones tail)
- Axilrod-Teller-Muto (C₉/R⁹) is 3-body analogue

Dispersion Coefficients (C₆, C₉)

London^{1,2}

 $W(R) = -C_6 / R^6$

Axilrod-Teller-Muto³

W(R)=C₉ (3 cos[ϕ]cos[ϕ]cos[ϕ]+ 1)/R⁹

^{1,} W. Heitler and F. London, Z. Phys. **44**, 455 (1927)
 ² R. Eisenschitz and F. London, Z. Phys. **60**, 491 (1930)
 ³ B. M. Axilrod and E. Teller, J. Chem. Phys. **11**, 299 (1943)

Objectives

Van der Waals forces are important

-> Noble gases are proto-typical! We use Ar as a case of principle.

- London (C₆/R⁶) widely used in force fields (Lennard-Jones tail)
- Axilrod-Teller-Muto (C_9/R^9) is 3-body analogue

-> Argon EOS

- Evaluation of the 2body, 3 body and MBC to the crystal solid (in progress)
- -> We apply the method to Ellipticine and DNA

- Binding Energy of the drug Ellipticine to DNA

QMC Modelization

- We Solve the many-body Schrodinger equation and we express the wavefunction as follow;

 $\Psi_{T}(x_{1}, x_{1}, ..., x_{N}) = J(x_{1}, x_{1}, ..., x_{N})\Psi_{AS}(x_{1}, x_{1}, ..., x_{N})$

DFT Calculation (LDA funtional)

Trial Wavefunction (PWSCF)

```
J_1(\vec{R}) = \prod_{ia} \exp\left[\sum_k (b_{ak}r_{ia} + c_{ak})v_{ak}(r_{ia})\right]J_2(\vec{R}) = \prod_{i < j} \exp\left[\sum_k (b_k r_{ij} + c_k)v_k(r_{ij})\right]
```

One-Body + Two-body Jastrow

Optimization of the factors (convergence using VMC)

 $E_{VMC} = \min_{\alpha} \left\langle \Psi_T(\vec{R};\alpha) \middle| \hat{H} \middle| \Psi_T(\vec{R};\alpha) \right\rangle$

Variational Monte Carlo

New Trial Wavefunction

 $E_{DMC} = \left\langle \phi_0 \left| \hat{H} \right| \Psi_T \right\rangle, \phi_0 = \lim_{\beta \to \infty} \exp^{-\beta \hat{H}} \Psi_T$

Diffusion Monte Carlo

- Solid: Corrections to finite sizes effects, Kinetic and MPC, twists averaging

Argon Systems

^a Experimental, P. R. Herman, P. E. LaRocque, and B. P. Stoicheff, J. Chem. Phys. 88, 4535 (1988)

^b R. Podeszwa and K. Szalewicz, J. Chem. Phys. **126**, 194102 (2007)

^cO. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. **132**, 234109 (2010)

Argon Solid

Argon Solid

- Ellipticine is a planar polycyclic aromatic molecule
- Bind to DNA by non-covalent pi-pi-stacking with the nucleic acid Watson-Crick base pairs
- Binding energy <u>is directly correlated</u> to biological activity of the molecule in cancer treatment

Dispersion-corrected atomcentered potentials (DCACPs)

14346

J. Phys. Chem. B 2007, 111, 14346-14354

Predicting Noncovalent Interactions between Aromatic Biomolecules with London-Dispersion-Corrected DFT

I-Chun Lin, O. Anatole von Lilienfeld,[†] Maurício D. Coutinho-Neto,[‡] Ivano Tavernelli, and Ursula Rothlisberger*

Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Received: June 27, 2007; In Final Form: September 17, 2007

CH ₃	ΔE _{Bind} (Kcal/mol)	Level of theory
	+5.2	DFT ¹
N I I	-46.6	vdW-TS ¹
'' СН ₃	-39.1	vdW-TB ¹
ellipticine	-35.68 (D2) ; -32.84 (D2+D3)	PBE-D3/QZVP ²
emptione	-39.11 (D2); -36.27 (D2+D3)	PBE-NL/QZVP ²
₫.	-40.91 (D2) ; -38.07 (D2+D3)	dDsC-PBE/QZ4P ²
X	-34	vdW-MB ¹

Collective many-body van der Waals interactions in molecular systems

Robert A. DiStasio, Jr.^a, O. Anatole von Lilienfeld^b, and Alexandre Tkatchenko^{c1}

^aDepartment of Chemistry, Princeton University, Princeton, NJ 08544; ^bArgonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439; and ^cFritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

Edited by Peter J. Rossky, The University of Texas at Austin, Austin, TX, and approved July 27, 2012 (received for review May 22, 2012)

Van der Waals (vdW) interactions are ubiquitous in molecules and condensed matter, and play a crucial role in determining the structure, stability, and function for a wide variety of systems. The accurate prediction of these interactions from first principles is a substantial challenge because they are inherently quantum me-

Results and Discussion To accurately compute the nonadditive many-body vdW energy, we begin by performing a self-consistent quantum mechanical calculation to generate the molecular electron density using semilocal density-functional theory (DFT) (23)—a method which accurately

[1] R. DiStasio, O. A. von Lilienfeld, A. Tkatchenko, PNAS (2012)[2] S. Grimme – Private communication

	ΔE _{Bind} (Kcal/mol)	Level of theory
	+5.2	DFT ¹
N	-46.6	vdW-TS ¹
'' СН ₃	-39.1	vdW-TB ¹
ellinticine	-35.68 (D2) ; -32.84 (D2+D3)	PBE-D3/QZVP ²
Chiptionio	-39.11 (D2); -36.27 (D2+D3)	PBE-NL/QZVP ²
š	-40.91 (D2) ; -38.07 (D2+D3)	dDsC-PBE/QZ4P ²
X	-34	vdW-MB ¹
	-33.6 ± 0.9	DMC

Collective many-body van der Waals interactions in molecular systems

Robert A. DiStasio, Jr.^a, O. Anatole von Lilienfeld^b, and Alexandre Tkatchenko^{c,1}

^aDepartment of Chemistry, Princeton University, Princeton, NJ 08544; ^bArgonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439; and ^cFritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

Edited by Peter J. Rossky, The University of Texas at Austin, Austin, TX, and approved July 27, 2012 (received for review May 22, 2012)

Van der Waals (vdW) interactions are ubiquitous in molecules and condensed matter, and play a crucial role in determining the structure, stability, and function for a wide variety of systems. The accurate prediction of these interactions from first principles is a substantial challenge because they are inherently quantum me-

Results and Discussion To accurately compute the nonadditive many-body vdW energy, we begin by performing a self-consistent quantum mechanical calculation to generate the molecular electron density using semilocal density-functional theory (DFT) (23)—a method which accurately

[1] R. DiStasio, O. A. von Lilienfeld, A. Tkatchenko, PNAS (2012)[2] S. Grimme – Private communication

 $\cap \Box$

26

Level of theory	$\Delta E_{B-A}^{A:T}$	$\Delta E_{B-A}^{C:G}$
DFT	+4.2	+1.9
vdW-TS	+2.5	-3.7
vdW-TB	+2.6	-3.5
vdW-MB	-0.1	-8.2

(Left) Binding energies (ΔE_{bind}) for the DNA–ellipticine complex in kcal/mol. (Right) Relative conformational energies of A-DNA and B-DNA ($\Delta E_{B-A} = E_B - E_A$) consisting of pure adenine–thymine (A:T) and cytosine–guanine (C:G) sequences in kcal/mol per bp. All DFT calculations were performed using the PBE functional (37).

Collective many-body van der Waals interactions in molecular systems

Robert A. DiStasio, Jr.^a, O. Anatole von Lilienfeld^b, and Alexandre Tkatchenko^{c1}

^aDepartment of Chemistry, Princeton University, Princeton, NJ 08544; ^bArgonne Leadership Computing Facilit 60439; and 'Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

Edited by Peter J. Rossky, The University of Texas at Austin, Austin, TX, and approved July 27, 2012 (received

Van der Waals (vdW) interactions are ubiquitous in molecules and condensed matter, and play a crucial role in determining the structure, stability, and function for a wide variety of systems. The accurate prediction of these interactions from first principles is a substantial challenge because they are inherently quantum me-

Results and Discussion To accurately compute the begin by performing a sel lation to generate the mo density-functional theory

Fig. 2. Percentagewise convergence of the individual vdW-*N*B contributions with respect to the vdW-MB energy. Displayed cases include the binding energy of the DNA-ellipticine complex (blue circles) and the relative binding energies of a single base pair in A-DNA and B-DNA consisting of pure adenine-thymine (black triangles) and pure cytosine-guanine (red squares) sequences. The unfilled markers at N = 2 correspond to the predictions of the vdW-TB effective pairwise model for each of the aforementioned systems.

National Laboratory, Argonne, IL

May 22, 2012)

ve many-body vdW energy, we it quantum mechanical calcuectron density using semilocal)—a method which accurately

Conclusion

- QMC is a great method but expensive. Requires tuning on supercomputers.
- Rare gas study confirms that the method goes below the Kcal/mol accuracy and reproduces CCSD (T) results.
- Van der Waals corrected DFT methods have improved greatly by the inclusion of Manybody effects. However, are still predicting energies widely spread. With a QMC benchmark, the order of the manybody-vdw correction can be controlled to reproduce DMC energies.

Acknowledgments

- Collaborators: Luke Shulenburger, Nichols A. Romero, Jeongnim Kim and O. Anatole von Lilienfeld
- This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
- Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

INCITE: Innovative and Novel Computational Impact on Theory and Experiment

INCITE promotes transformational advances in science and technology through large allocations of computer time, supporting resources, and data storage at the Argonne and Oak Ridge Leadership Computing Facilities (LCFs) for computationally intensive, large-scale research projects.

Allocation Programs at the LCFs

60%			200/		100/	
	60% IN	ICITE	30% A		Dire Discre	ector's etionary
Mission	High-risk, high-payoff science that requires LCF- scale resources*		High-risk, high-payoff science aligned with DOE mission		Strategic LCF goals	
Call	1x/year – (Closes June)		1x/year (Closes February)		Rolling	
Duration	1-3 years, yearly renewal		1 year		3m,6m,1 year	
Typical Size	30 - 40 projects	10M - 100M core-hours/yr.	5 - 10 projects	1M – 75M core-hours/yr.	100s of projects	10K – 1M core-hours
Review Process	Scientific Peer-Review	Computational Readiness	Scientific Peer-Review	Computational Readiness	Strategic i feasibility	mpact and
Managed By	INCITE m committee	anagement (ALCF & OLCF)	DOE Office of Science		LCF ma	nagement
Availability	Open to all scientific researchers and organizations Capability >20% of cores					

Twofold review process

		New proposal assessment	Renewal assessment
	Peer review: INCITE panels	 Scientific and/or technical merit Appropriateness of proposal method, milestones given Team qualifications Reasonableness of requested resources 	 Change in scope Met milestones On track to meet future milestones Scientific and/or technical merit
2	Computational readiness review: LCF centers	 Technical readiness Appropriateness for requested resources 	 Met technical/ computational milestones On track to meet future milestones
	Award Decisions	INCITE Awards Committee comp program manager, LCF directors	rised of LCF directors, INCITE of science, sr. management