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48	  racks	  	  
1,024	  nodes	  per	  rack	  
16	  cores	  per	  node	  	  
64	  threads	  per	  node	  
16GB	  memory/node	  
1.6GHz	  16-‐way	  core	  processor	  	  
240	  GB/s,	  35	  PB	  storage	  

786k	  cores	  
8.15	  PF/s	  
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Quad	  FPU	  (QPU)	  
DMA	  unit	  
List-‐based	  prefetcher	  
TM	  (Transac,onal	  Memory)	  
SE	  (Specula,ve	  Execu,on)	  
Wakeup-‐Unit	  
Scalable	  Atomic	  Opera,ons	  

TYPE:	  vector4double	  A;	  	  
Loads	  and	  stores	  
Unary	  opera,ons	  
Binary	  opera,ons	  
Mul,ply-‐add	  opera,ons	  
Special	  func,ons	  

BGQ – High Performance features 

Instruc,on	  Extensions	  (QPX)	  to	  PowerISA	  
4-‐wide	  double	  precision	  FPU	  SIMD	  (BG/L,P	  are	  
2-‐wide)	  usable	  as:	  

	  scalar	  FPU	  
	  4-‐wide	  FPU	  SIMD	  	  
	  2-‐wide	  complex	  arithme,c	  SIMD	  

Alached	  to	  AXU	  port	  of	  A2	  core	  –	  A2	  issues	  
one	  instruc,on/cycle	  to	  AXU	  
8	  concurrent	  floa,ng	  point	  opera,ons	  (FMA)	  +	  
load	  +store	  
§  6	  stage	  pipeline	  
Permute	  instruc,ons	  to	  reorganize	  vector	  data	  

	  supports	  a	  mul,tude	  of	  data	  
alignments	  

4R/2W	  register	  file	  
32x32	  bytes	  per	  thread	  

32B	  (256	  bits)	  data	  path	  to/from	  L1	  cache	  

Intrinsic:	  
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-‐	  	  	  	  The	  performance	  comes	  from	  the	  quad pipe	  Floa,ng point	  unit.	  
-‐  Each	  cycle,	  the	  quad	  FPU,	  can	  serve	  as	  a	  simple	  scalar	  FPU	  or	  a	  four wide	  SIMD	  

FPU,	  or	  it	  can	  perform	  two	  complex arithme,c	  SIMD	  opera,ons.	  	  
-‐  All	  of	  these	  opera,ons	  can	  be	  single 	  or	  double precision.	  	  
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Einspline 

Eval_z:	  
	  Evalua,on	  of	  spline	  coefficients	  (complex)	  
  
 
for ( i = 0; i < 64; i++ ){    
   s = d[i]; 
   p = (double *)coefs[i]; 
   for ( n = 0; n < M - rem ; n = n + 8){    
      double a0, a1,.., a7;  
      double b0, b1, .., b7;  
 
      a0 = v[n+0]; 
      //code 
      a7 = v[n+7]; 
               
      b0 = p[n+0]; 
      //code 
      b7 = p[n+7]; 
  
     //operations  
      a0=a0+s*b0;  
      ..  
      v[n+0]=a0; 
       .. 
}} 

Using	  QPX	  	  
  
 
for ( i = 0; i < 64; i++ ){    
   s = d[i]; 
     
   p = (double *)coefs[i]; 
   vector4double t = { s, s, s, s }; 
   for ( n = 0; n < M - rem ; n = n + 8){    
    vector4double f0, f1;  
    vector4double g0, g1;  
 
     
 
          g0 = vec_ld( j,    p ); 
          g1 = vec_ld( j+32, p ); 
 
          f0 = vec_ld( j,    v ); 
          f1 = vec_ld( j+32, v ); 
 
          f0 = vec_madd( t, g0, f0 ); 
          f1 = vec_madd( t, g1, f1 ); 
 
          vec_st( f0, j,    v ); 
          vec_st( f1, j+32, v ); 
}} 



QMC Modelization 

	  The	  many-‐body	  trial	  wavefunc,on	   !T (R) = J R( )!AS R( ) = eJ1+J2+.. CkDk
"(!)Dk

#(!)
k

M
$

J1 = u1 ri ! rl( )
l

Nions

"
i

N

"

J2 = u2 ri ! rj( )
i" j

N

#

Correla,on	  (Jastrow)	   An,-‐symmetric	  func,on	  (Pauli	  principle)	  	  

Dk
! =

"1 r1( ) ! !1 rN!( )
! " !

!
N! r1( ) ! !

N! r
N!( )

Single-‐par,cle	  orbitals	  	   !i = Cl
i!l

l

l=Nb

"

Basis	  sets:	  molecular	  orbitals,	  
plane-‐wave,	  grid-‐based	  orbitals…	   !l

Many	  methods	  of	  approxima,ng	  the	  plane-‐wave-‐represented	  single-‐par,cle	  orbitals	  
with	  polynomials:	  

	  -‐B-‐spline	  approxima,on	  in	  QMC,	  report	  significant	  reduc,on	  in	  ,me	  of	  
calcula,on	  while	  maintaining	  plane-‐wave-‐level	  accuracy	  
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Profiling 
System:	  

–  Ar	  Solid	  –	  32	  atoms	  –	  256	  electrons	  –	  B-‐splines	  representa,on	  of	  WF	  (1.9Gb)	  :	  	  
–  256	  nodes	  –	  32	  threads	  –	  2	  Walkers	  per	  thread	  

	  
Flat	  profile:	  	  
Total	  run	  Nme:	  53min40	  
Each	  sample	  counts	  as	  0.01	  seconds.	  
%	  	  	  cumula,ve	  	  	  self	  	  	  	  	  self	  	  	  	  	  total	  
	  ,me	  	  	  seconds	  	  	  seconds	  	  	  	  calls	  	  Ts/call	  	  Ts/call	  	  name	  	  	  	  	  	  	  
56.95	  	  58369.57	  58369.57	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .eval_mulN_UBspline_3d_z_vgh	  	  
14.02	  	  72738.82	  14369.25	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .eval_mulN_UBspline_3d_z	  	  	  
2.11	  	  77918.51	  	  2161.01	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SymmetricDTD	  	  	  	  
1.70	  	  79663.07	  	  1744.56	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  EinsplineSetExtended::evaluate	  	  

Profile	  with	  original	  version	  of	  QMCPACK	  

EvaluaNon	  of	  spline	  
coefficients	  (complex)	  

EvaluaNon	  of	  spline,	  gradient	  and	  
hessian	  coefficients	  (complex)	  

71%	  of	  the	  applica,on	  ,me	  spent	  in	  the	  Spline	  evalua,on	  of	  the	  Wave	  Func,on	  
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Optimization 

-‐>	  2	  algorithms	  	  accessing	  memory	  horizontally	  or	  ver,cally	  over	  the	  {Points	  in	  space;	  
minicube	  around	  the	  point}	  	  	  	  

Important	  reduc,on	  of	  the	  number	  of	  arithme,c	  opera,ons	  

-‐>	  Complete	  rewri,ng	  of	  the	  func,ons	  with	  QPX	  intrinsics	  	  

-‐	  Increase	  of	  the	  number	  of	  floa,ng	  point	  opera,ons	  
-‐	  Reduc,on	  of	  the	  number	  of	  cycles	  per	  opera,on	  

-‐>	  Manual	  memory	  prefetching	  when	  possible	  

Increase	  the	  availability	  of	  data	  in	  the	  L1	  cache	  	  	  



Profiling 

Speed	  up	   Eval_Z	   Eval_D	   Eval_S	   Eval_Z_VGH	   Eval_D_VGH	   Eval_S_VGH	  

Algorithm B 0.38 0.81 0.39 1.59 0.93 1.62 

Algorithm M 2.48 0.91 1.02 2.15 1.01 0.95 

Algorithm (X)  
with QPX 

3.94 
(Algo. M) 

1.08 
(Algo. M) 

1.26 
(Algo. M) 

7.62 
(Algo. B) 

1.58 
(Algo.B) 

1.31 
(AlgoB) 

QPX + 
Prefetch 4.25 1.23 1.81 - - - 

Eval_Z	   	  Complex	  Double	  	  
Eval_D 	  Double	  
Eval_S 	  Float	  

Eval_Z_VGH	   	  Complex	  Double	  	  
Eval_D_VGH 	  Double	  
Eval_S_VGH 	  Float	  

Coefficients	  (type)	   Coefficients,	  Gradients,	  Hessian	  (type)	  
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Profiling 
System:	  

–  Ar	  Solid	  –	  32	  atoms	  –	  256	  electrons	  –	  Bsplines	  WF	  (1.9Gb)	  :	  	  
–  256	  nodes	  –	  32	  threads	  –	  2	  Walkers	  per	  thread	  

Profile	  with	  QPX	  and	  Prefetch	  

Flat	  profile:	  
Total	  run	  Nme:	  20min03	  
Each	  sample	  counts	  as	  0.01	  seconds.	  
	  	  %	  	  	  cumula,ve	  	  	  self	  
	  ,me	  	  	  seconds	  	  	  seconds	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,me	  	  	  seconds	  	  	  seconds	  
	  	  14.08	  	  	  5380.43	  	  5380.43	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .eval_mulN_UBspline_3d_z_vgh	  	  	  	  	  	  	  	  	  	  	  56.95	  	  58369.57	  58369.5	  	  	  	  	  	  	  
	  	  	  	  	  8.25	  	  12270.83	  	  3152.52	  	  	  	  	  	  	  	  	  	  	  	  	  .eval_mulN_UBspline_3d_z	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  14.02	  	  72738.82	  14369.25	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  5.68	  	  14441.45	  	  2170.62	  	  	  	  	  	  	  	  	  	  	  	  	  .SymmetricDTD	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2.11	  	  77918.51	  	  2161.01	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  4.85	  	  16292.97	  	  1851.52	  	  	  	  	  	  	  	  	  	  	  	  	  EinsplineSetExtended::evaluate	  	  	  	  	  	  	  	  	  	  	  	  	  1.70	  	  79663.07	  	  1744.5	  
	  	  	  	  	  	  	  	  

Profile	  with	  Original	  Algoritm	  

Flat	  profile:	  
Total	  run	  Nme:	  53min40	  

Each	  sample	  counts	  as	  0.01	  seconds.	  
	  	  %	  	  	  cumula,ve	  	  	  self	  

Total	  run	  Nme	  Speedup	  of	  2.68	  Nmes	  	  
	  
	  

12	  



HPM PROFILING 

27.644.290.379.027   All XU Instruction 
22.786.190.220.714   All AXU Instruction 
43.043.218.198.088   FP Operations Group 1 
  
Derived metrics for code block "mpiAll" averaged 
over process(es) on node <0,0,0,0,0>: 
Instruction mix:  FPU = 45.18 %,  FXU = 54.82 % 
Instructions per cycle completed per core = 
0.6138 
Per cent of max issue rate per core = 33.65 % 
Total weighted GFlops for this node = 13.412 
Loads that hit in L1 d-cache =  94.03 % 
                  L1P buffer =   5.36 % 
                  L2 cache   =   0.35 % 
                  DDR        =   0.26 % 
DDR traffic for the node: ld = 1.508, st = 
0.540, total = 2.049 (Bytes/cycle) 

 8.581.366.867.332   All XU Instruction 
 4.896.512.230.816   All AXU Instruction 
13.017.533.928.058   FP Operations Group 1 
  
Derived metrics for code block "mpiAll" averaged 
over process(es) on node <0,0,0,0,0>: 
Instruction mix:  FPU = 36.33 %,  FXU = 63.67 % 
Instructions per cycle completed per core = 
0.4417 
Per cent of max issue rate per core = 28.12 % 
Total weighted GFlops for this node = 10.922 
Loads that hit in L1 d-cache =  88.60 % 
                  L1P buffer =   5.92 % 
                  L2 cache   =   4.50 % 
                  DDR        =   0.98 % 
DDR traffic for the node: ld = 3.503, st = 
1.101, total = 4.604 (Bytes/cycle) 

Percentage	  of	  peak=	  5.33%	  	  Percentage	  of	  peak=	  6.55%	  	  

Total	  run	  Nme	  Speedup	  of	  2.68	  Nmes	  	  
	  
	  

Original	  Code	   BGQ	  op,mized	  Code	  
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QMCPACK – performance on Blue Gene/Q 

Applica,on	  speedup	  using	  QPX	  and	  prefetching	  is	  2.68	  folds	  from	  original	  
Algorithm.	  	  	  	  

1	   1	   1	  

2.08	  

1.01	   1.1	  

2.68	  

1.09	   1.21	  

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

COMPLEX	   REAL	  -‐	  Double	  Precision	   REAL	  -‐	  Single	  Precision	  

Original	   NoQPX	   QPX	  
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QMC Simulations DataBase for Predictive Theory and Modeling Kim

Figure 3: (a) Weak and (b) strong scaling of 4x4 graphite system (256 electrons). The numbers
in the parenthesis denote the number of nodes for the baseline on each architecture. For weak-
scaling runs, we fix the target walkers per node at 128 and varies the number of nodes. For
strong-scaling runs, the total number of walkers is fixed at 131K walkers on Titan. Not shown in
(b) is 2x speed up of the baseline with GPUs over with CPUs on Titan. The arrow corresponds
to the crossing point below which GPU performs better than CPUs.

depends on many variables, e.g., the problem size, the number of k-points and the platform.

Our request is based on our performance data with these variables on Titan and Mira, in-

cluding the time per MC step with respect to the problem size, ranging ∼ 102−104 electrons.

A median QMC run of 500 electrons to complete step ii) and iii) uses 2048 Titan nodes or

4096 Blue Gene/Q nodes for 4 hours, amounting to 250K core hours. The requested re-

sources correspond to 200M = 20 systems× 40 configuration× 250K. The detailed resource

justifications for the milestones of Year 1 are presented in Sec. 2.1

We have great control and flexibility over amount of parallelization in each calculation.

Multiple k-points are executed in parallel. In the best case scenario, we can use the entire

machine and run many simulations simultaneously. Most of our runs will be able to utilize

20% of Mira and Titan. Our workflow tools allows us to automate QMC runs involving

multiple ES codes (e.g., Quantum Espresso, GAMESS), conversion tools and QMCPACK

and to manage jobs to increase the throughput.

3.3 Parallel Performance

We achieve high computational and parallel efficiency using MPI+X hybrid programming

model, where X is OpenMP threads on x86 or Blue Gene/Q cores and CUDA on GPUs.

Each thread (GPU) manages a set of Walkers. The objects associated with ΨT and Ĥ are

replicated on all the threads except for large, read-only objects, such as B-spline tables.

They are allocated at the MPI task (node) level and shared among all the threads on a

node, significantly reducing the memory footprint of the B-spline representation as well as

reducing communication overhead. Only the performance of collectives at the extremely

scales will affect the parallel efficiency.

The QMC efficiency is measured by the wall-clock time to achieve a target error bar δ which

12

Overall Scaling on LCF Architectures    



Applications on van der Waals dominated systems 
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Objectives 
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Van	  der	  Waals	  forces	  are	  important	  	  
	  -‐>	  Noble	  gases	  are	  proto-‐typical!	  We	  use	  Ar	  as	  a	  case	  of	  principle.	  

-‐  London	  (C6/R6)	  widely	  used	  in	  force	  fields	  (Lennard-‐Jones	  tail)	  
-‐  Axilrod-‐Teller-‐Muto	  (C9/R9)	  is	  3-‐body	  analogue	  

Dispersion	  Coefficients	  (C6,	  C9)	  	  

W(R)=-‐C6/R6	  

W(R)=C9	  (3	  cos[ϕ]cos[ϕ]cos[ϕ]+	  1)/R9	  

London1,2	  

Axilrod-‐Teller-‐Muto3	  

1,	  W.	  Heitler	  and	  F.	  London,	  Z.	  Phys.	  44,	  455	  (1927)	  
2	  R.	  Eisenschitz	  and	  F.	  London,	  Z.	  Phys.	  60,	  491	  (1930)	  
3	  B.	  M.	  Axilrod	  and	  E.	  Teller,	  J.	  Chem.	  Phys.	  11,	  299	  (1943)	  

cifically, we will first briefly review dispersion contributions
to interatomic potentials at typical equilibrium geometries
using the three-body Axilrod–Teller–Muto expression.25,26

Then, we will discuss the necessary triple dipole C9 coeffi-
cients that are obtained in analogy to the recently devised
scheme for predicting dynamic double dipole C6 from elec-
tron densities.36 Within this scheme, atomic C6 and C9 coef-
ficients depend on the chemical environment of each atom,
and therefore become functionals of the electron density.
Thereafter we will shift focus to the treatment of interatomic
equilibrium distances, as they occur in a broad variety of
vdW systems. The two- and three-body dispersion energies
are damped at short distances according to an adapted two-
body potential following the work of Tang and Toennies.6,37

For He–Xe rare gas dimer results from literature, we found a
linear correlation between van der Waals radii and Tang-
Toennies !TT" range parameters which we exploit to com-
pute the range parameters from dynamic van der Waals radii
!determined “on the fly” from the electron density". An in-
terpolation of literature values for He and Ar trimers yields a
similar relationship for TT range parameters that damp the
three-body contribution. The first resulting dispersion energy
estimates are consistent with results from symmetry-adapted
perturbation theory !SAPT" where available.38,39 We will
proceed with a comparison of the two- and three-body dis-
persion energies to experimental or high-level theoretical
binding and cohesive energies for a broad variety of systems.
Numerical estimates are presented for the S22 data set,9 a
range of large molecular and condensed matter systems in-
cluding bilayer graphene, ice, C60-dimer, benzene crystal, di-
hydrofolate reductasee !DHFR" protein, double stranded
DNA, ! helical polyalanine decamer, intercalator drug
ellipticine-DNA complex, 42 base pairs from the JSCH-2005
database,9 and several molecular crystals from a crystal
structure blind test.40 Finally, we will discuss impact and
potential future applications of the here presented scheme.

Various assumptions underlie our predictions. First of
all, we use dispersion coefficients that are derived from an
isotropic model of atoms in molecules !Hirshfeld partition-
ing". Second, all our C6 and C9 interactions, inter- as well as
intramolecular, are assumed to be free of dynamic screening
effects due to the surrounding electronic and nuclear envi-
ronment. In particular, we expect this assumption to be ques-
tionable for solids where the screening is known to play a
significant role.41 Further assumptions include the specific
form of the damping function, which is strictly valid only for
interactions between spherical atoms. Approximations made
within the determination of the dispersion coefficients ac-
cording to Ref. 36 are quantified by comparison to reliable
reference data for molecules.

Our main finding is that the three-body dispersion en-
ergy is not negligible even though it is generally smaller than
15% of binding or cohesive energies. For some relevant sys-
tems, however, such as bilayer graphene, this contribution
can reach up to 50% of relevant binding energies. The mag-
nitude of three-body dispersion energy can be large enough
to affect rankings of energetically competing dimer conform-
ers or molecular crystal morphologies. The two-body contri-
bution is found in many cases to be equal or larger than the

intermolecular binding energies or cohesive energies of sol-
ids, a finding that underscores the need for accurate ap-
proaches.

II. THEORY

A. Interatomic dispersion energies

The dispersion contribution to the energy of an ensemble
of atoms #I$ residing at #RI$ can be written as a many-body
expansion of potentials,

Edisp!#RI$" =
1
2%

IJ
E!2"!RI,RJ" +

1
6%

IJK
E!3"!RI,RJ,RK" + HOT,

!1"

where HOT are the higher order terms. In the dissociative
limit or for !spherical" neutral atoms with nonoverlapping
electron density these terms correspond to

E!2"!RI,RJ" = −
C6IJ

RIJ
6 −

C8IJ

RIJ
8 −

C10IJ

RIJ
10 − HOT, !2"

E!3"!RI,RJ,RK" = C9IJK

3 cos&"I'cos&"J'cos&"K' + 1

RIJ
3 RIK

3 RJK
3 + HOT,

!3"

where RIJ= (RI−RJ( and #"i$ are the angles in atomic tri-
angle. The first term of the three-body dispersion contribu-
tion to the total energy of three atoms, I ,J ,K, is given by the
Axilrod–Teller–Muto expression.25,26 Figure 1 illustrates the
behavior of this term for an isosceles triangle as a function of
one angle.

B. Dispersion coefficients

The Casimir–Polder integral,

C6IJ
=

3
#
)

0

$

d%!I!i%"!J!i%" , !4"

FIG. 1. Axilrod–Teller–Muto three-body energy !E!3" /C9IJK
" !solid black

line" in an isosceles triangle as a function of " according to Eq. !3" for
RIJ=RJK=1. The red solid curve is the damping function of Eq. !13". The
red dashed curve corresponds to the product of the two functions.

234109-2 O. Anatole von Lilienfeld and A. Tkatchenko J. Chem. Phys. 132, 234109 !2010"
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Van	  der	  Waals	  forces	  are	  important	  	  
	  -‐>	  Noble	  gases	  are	  proto-‐typical!	  We	  use	  Ar	  as	  a	  case	  of	  principle.	  

-‐  London	  (C6/R6)	  widely	  used	  in	  force	  fields	  (Lennard-‐Jones	  tail)	  
-‐  Axilrod-‐Teller-‐Muto	  (C9/R9)	  is	  3-‐body	  analogue	  

	  -‐>	  We	  apply	  the	  method	  to	  Ellip,cine	  and	  DNA	  

-‐ 	  Binding	  Energy	  of	  the	  drug	  Ellip,cine	  to	  DNA	  

	  -‐>	  Argon	  EOS	  	  

-‐ 	  Evalua,on	  of	  the	  2body,	  3	  body	  and	  MBC	  to	  the	  crystal	  solid	  (in	  progress)	  



QMC Modelization 
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DFT	  Calcula,on	  (LDA	  fun,onal)	  
	  
	  

One-‐Body	  +	  Two-‐body	  Jastrow	  
	  
	  

Varia,onal	  Monte	  Carlo	  	  
	  
	  

Diffusion	  Monte	  Carlo	  
	  

-‐	  We	  Solve	  the	  many-‐body	  Schrodinger	  equa,on	  and	  we	  express	  the	  wavefunc,on	  as	  
follow;	  

Trial	  Wavefunc,on	  
(PWSCF)	  

Op,miza,on	  of	  the	  factors	  
(convergence	  using	  VMC)	  	  

New	  Trial	  Wavefunc,on	  

!T x1, x1,.., xN( ) = J x1, x1,.., xN( )!AS x1, x1,.., xN( )

J1(
!
R) = exp bakria + cak( )vak ria( )

k
!
"

#
$

%

&
'

ia
(

J2 (
!
R) = exp bkrij + ck( )vk rij( )

k
!
"

#
$

%

&
'

i< j
(

EVMC =min! !T

!
R;!( ) Ĥ !T

!
R;!( )

EDMC = !0 Ĥ !T ,!0 = lim""#
exp$"Ĥ !T

-‐	  Solid:	  	  Correc,ons	  to	  finite	  sizes	  effects,	  Kine,c	  and	  MPC,	  	  twists	  averaging	  
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a	  Experimental,	  P.	  R.	  Herman,	  P.	  E.	  LaRocque,	  and	  B.	  P.	  Stoicheff,	  J.	  Chem.	  Phys.	  88,	  4535	  (1988)	  	  
b	  R.	  Podeszwa	  and	  K.	  Szalewicz,	  J.	  Chem.	  Phys.	  126,	  194102	  (2007)	  	  
C	  O.	  A.	  von	  Lilienfeld	  and	  A.	  Tkatchenko,	  J.	  Chem.	  Phys.	  132,	  234109	  (2010)	  

dAr-‐Ar	  
(Å)	  

E(2)
(meV)	  

E(3)
(meV)	  

C6	   C9	  

This	  
Work	  

3.757	   -‐12.232	  
±0.987	  

0.289	  
±0.567	  

63.1	   517.6	  

Ref.	   3.76a	   -‐12.3a	   0.3b	   64.3c	   518c	  

Argon Systems 
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Lattice constant (angstrom)

QMC FCC energies for 108 atom supercell of Ar

Binding energy (from fit) =  88.1, with qha =  80.3 +/-  1.0 meV 
Binding energy (from isolated) = 111.6, with qha = 103.8 +/-  1.0 meV 
        experiment =  80.1 meV
Bulk Modulus =   3.8, with qha =   3.3 +/-  0.1 GPa 
        experiment =   2.7 GPa

Lattice Constant =  5.280, with qha =  5.340 +/- 0.014 Angstrom 
        experiment =  5.311 Angstrom

Vinet Fit Goodness (reduced chisquare) = 3.24

dmc

Argon Solid 
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Argon Solid 
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Ellipticine 
Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
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-‐	  Ellip,cine	  is	  a	  planar	  polycyclic	  aroma,c	  molecule	  	  
-‐	  Bind	  to	  DNA	  by	  non-‐covalent	  pi-‐pi-‐stacking	  with	  the	  nucleic	  
acid	  Watson-‐Crick	  base	  pairs	  	  
-‐	  Binding	  energy	  is	  directly	  correlated	  to	  biological	  ac,vity	  of	  
the	  molecule	  in	  cancer	  treatment	  
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Ellipticine 
Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
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field simulations. The electron density of the AT-E + and
AT-E complexes has been analyzed further. Upon protonation,
a new σ bond is formed resulting in an increase in the in-plane
electron density. To compensate for this change, the electron
density in the π system of protonated ellipticine is slightly
depleted.
Table 7 and Figure 4 summarize the results of DCACP-BLYP

geometry optimizations on the five selected ellip-WC com-
plexes. The interaction energy (∆EAT-In/GC-In

opt ) follows the
same trend as observed in calculations using rigid monomer
geometries (∆Efix, Table 6) but the values are 10-20% larger.
The contributions to the interaction energy can be roughly
separated into dispersion, multipole-multipole interactions,
H-bonding, and for charged complexes, multipole-charge in-
teractions. The deformation of the planar WC base pair leads
to slightly weaker H-bonds: the H-bond strength (∆EA-T/G-C

fix ),
on average, is roughly 1.0 kcal/mol weaker in the significantly
deformed charged ellip-WC complexes than the corresponding
isolated WC base pairs. In neutral complexes it is only weaker
by roughly 0.3 kcal/mol due to the largely preserved planar
structures. The loss of H-bonding, however, is more than
compensated for by other favorable interactions introduced upon
deformation. An increase in the z component (z-axis as shown
in Figure 4) of the dipole moment results in a stronger dipole-

charge as well as dipole-dipole interactions in charged com-
plexes (Table 7). For comparison, the dipole moment of the
planar WC A‚‚‚T and G‚‚‚C base pairs is 1.42 and 5.87 Debye,
respectively. It is worth noting that the GC-E complex is
more stable than the AT-E complex by a small margin (0.8
kcal/mol), supporting the observation that ellipticine has a prefer-
ence to intercalate between d(GC)2 over d(AT)2 stacked pairs.73
Figure 5 summarizes the interaction energy of the intercalation

process evaluated at different intermoiety displacements ∆x in
increments of 1 Å. The maximal interaction is found at the fully
inserted configuration ∆x ) 0 Å, as expected, and a large well
depth, defined as Eint(∆x ) 5) - Eint(∆x ) 0), of roughly 20
kcal/mol is observed. At ∆x ) 5 Å, Eint is still very attractive.
The DCACP-BLYP Eint has been calculated with the isolated
moiety assuming the same geometry as found in the respective
optimized ellipticine-d(CG)2 complexes. In accommodating the
ellipticine molecule, DNA is known to unwind and lengthen;73
therefore, one could expect a large deformation energy upon
intercalation. Geometry optimization on the corresponding
intercalator-free 4-nucleobase complex, however, shows little
change in energy compared to the ones calculated with
geometries taken from the optimized ellipticine-d(CG)2 com-
plexes, indicating a presence of a local minima with large
interbase separation. This data is supported by the fact that base
pairs found at the ends of a DNA segment tend to be more
distorted with little π-π stacking interaction. Our results
indicate that the intercalation process is energetically favorable
and that the introduction of ellipticine in such positions should
not cause a large initial loss of π-π stacking. This may serve
as an alternative explanation as to why ellipticine prefers the
d(CpG)2 intercalation site as reported in ref 73. The binding
site preference of ellipticine observed in crystals of ref 73 could
be more related to the sequence position than to the nature of
the base. The use of larger DNA fragments or a fragment where
d(CpG)2 is not located at the extremities may be necessary for
a proper evaluation of the sequence-dependent binding prefer-
ence for intercalators.
To evaluate the effect of DCACPs, single-point energy

calculations with the DCACP-BLYP optimized geometries for
∆x ) 0 and 5 Å have been carried out using the BLYP
functional alone. For ∆x ) 0 Å, the resulting interaction energy
is repulsive (18.4 kcal/mol), whereas for ∆x) 5 Å, the complex
is slightly stable (-3.3 kcal/mol). The use of DCACPs is

TABLE 7: Interaction Energy of the Fully Relaxed
Ellip-WC Complexes (∆EAT-In/GC-In

opt , kcal/mol) and the
H-Bonding Energy of the WC Base Pair in the
Geometry-Optimized Ellip-WC Complexes
(∆EA-T/G-C

fix , kcal/mol)a

complex GC-9AE+ AT-E+ GC-E+ AT-E GC-E

∆EAT-In/GC-In
opt -25.02 -21.47 -20.47 -15.48 -16.56

∆EA-T/G-C
fix -27.23 -14.37 -27.18 -15.01 -27.97

µA-T/G-C 6.76 2.31 6.15 1.70 5.92
a The ∆EA-T/G-C

fix should be compared with the corresponding
values in Table 5. The overall dipole moment (µA-T/G-C, Debye) of
the WC base pair is also included. In denotes the corresponding
intercalator.

Figure 4. Optimized structures of ellip-WC complexes: (a)GC-
9AE+, (b) AT-E+, (c) GC-E+, (d) AT-E, and (e) GC-E. H atoms
are omitted for clarity.

Figure 5. Interaction energy profile of the intercalation process in the
ellipticine-d(CG)2 complex as a function of the intermoiety displace-
ment ∆x. The interaction energy (Eint, kcal/mol) is quoted in the plot.
The upper left and lower right insets correspond to the ∆x ) 0 and 5
Å configurations, respectively. H atoms are omitted for clarity.
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Within the framework of Kohn-Sham density functional theory, interaction energies of hydrogen bonded
and π-π stacked supramolecular complexes of aromatic heterocycles, nucleobase pairs, and complexes of
nucleobases with the anti-cancer agent ellipticine as well as its derivatives are evaluated. Dispersion-corrected
atom-centered potentials (DCACPs) are employed together with a generalized gradient approximation to the
exchange correlation functional. For all systems presented, the DCACP calculations are in very good agreement
with available post Hartree-Fock quantum chemical results. Estimates of 3-body contributions (<15% of
the respective interaction energy) and deformation energies (5-15% of the interaction energy) are given.
Based on our results, we predict a strongly bound interaction energy profile for the ellipticine intercalation
process with a stabilization of nearly 40 kcal/mol (deformation energy not taken into account) when fully
intercalated. The frontier orbitals of the intercalator-nucleobase complex and the corresponding non-intercalated
nucleobases are investigated and show significant changes upon intercalation. The results not only offer some
insights into the systems investigated but also suggest that DCACPs can serve as an effective way to achieve
higher accuracy in density functional theory without incurring an unaffordable computational overhead, paving
ways for more realistic studies on biomolecular complexes in the condensed phase.

1. Introduction
Noncovalent interactions between aromatic molecules are

believed to contribute significantly to the stability and confor-
mational variability of many biomacromolecules. In particular,
π-π interactions between nucleobases play a key role in
assembling various architectures such as DNA and RNA. These
interactions influence not only the structure and dynamics of
nucleic acids but also their interactions with polycyclic aromatic
molecules. The ability of these molecules to intercalate between
adjacent base pairs of DNA has attracted much attention owing
to the clinical success of many intercalators in antitumor
chemotherapy.1-3 Detailed knowledge of π-π interactions may
prove invaluable in designing novel DNA-intercalation drugs.
The macromolecular effects of intercalator-DNA interac-

tions, such as the unwinding and the lengthening of DNA, have
been studied extensively by experiments.4-8 These provide only
limited information on the nature of this association at the
atomistic level.9 On the other hand, computer simulations can
give atomistic insights into DNA-sequence specific interactions,
binding selectivity, and the role of solvents as well as ions in
the intercalation process. For this study, the alkaloid ellipticine
and its derivatives (Table 1) have been chosen. Ellipticine is
isolated from Ochrosia elliptica,10 and many of its more soluble
derivatives yield promising results for cancer treatments.11NMR
studies have shown intercalation to be a DNA binding mode
for ellipticine itself.12 Further searches for ellipticine derived

drugs are likely to profit from a detailed atomistic knowledge
of their binding mechanism.
For simple heterocycles or large polarizable aromatic poly-

cyclic compounds such as ellipticine and nucleobases, London
dispersion forces constitute one of the major stabilizing com-
ponents for their supramolecular complexation.13-16 Unfortu-
nately, a description of these forces requires an accurate
treatment of electron correlation effects; high-level correlated
ab initio methods such as coupled-cluster theory with large basis
sets or quantum Monte Carlo allow for an accurate treatment
but are not applicable for all but the smallest systems. The
tractable size of aromatic heterocycle complexes has prompted
studies using MP2 and CCSD(T) methods.17-23 For larger
systems such as stacked DNA base pairs, interaction energies
have been computed with ab initio methods, albeit to our
knowledge, CCSD(T) calculations with large basis set have yet
to be attempted. Instead, MP2 calculations in the complete basis
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TABLE 1: Structure of Ellipticine and Its Derivatives

intercalator charge R1 R2 R3
E 0 H H
9HE 0 OH H CH3
E + +1 H H H
9AE + +1 NH2 H H
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Ellipticine 
Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
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Level	  of	  theory	   ΔEBind	  (Kcal/mol)	  

DFT1	  	   +5.2	  

vdW-‐TS1	   -‐46.6	  

vdW-‐TB1	   -‐39.1	  

PBE-‐D3/QZVP2	   -‐35.68	  (D2)	  ;	  -‐32.84	  	  (D2+D3)	  

PBE-‐NL/QZVP2	   -‐39.11	  (D2)	  ;	  	  -‐36.27	  (D2+D3)	  

dDsC-‐PBE/QZ4P2	   -‐40.91	  (D2)	  ;	  -‐38.07	  (D2+D3)	  

vdW-‐MB1	   -‐34	  

DMC	   -‐33.6	  ±	  0.9	  
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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.

intermolecular interactions ∣ dispersion interactions ∣ force fields ∣
DNA stability ∣ polymorphism

Atomistic simulations of molecular ensembles have greatly
contributed to our understanding of the microscopic details

of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5–7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10–14), as well as for noble gas liquids
(15–17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive C6∕R6 interatomic pairwise summation (18–22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

Results and Discussion
To accurately compute the nonadditive many-body vdWenergy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yieldC6 coefficients that are accu-
rate to ≈5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrödinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10–12). By only including interactions between dipoles, diagona-
lization of the 3N × 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdWenergy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of ≈1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:
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Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
in Chart 1. Ethidium is often used as a probe for a study of the(4) Bailly, C.; Echepare, S.; Gago, F.; Waring, M. J. Anti-Cancer Drug Des.
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Chart 1

Stacking between Intercalators and DNA Base Pairs AR T I C L E S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 13, 2002 3367

Level	  of	  theory	   ΔEBind	  (Kcal/mol)	  

DFT1	  	   +5.2	  

vdW-‐TS1	   -‐46.6	  

vdW-‐TB1	   -‐39.1	  

PBE-‐D3/QZVP2	   -‐35.68	  (D2)	  ;	  -‐32.84	  	  (D2+D3)	  

PBE-‐NL/QZVP2	   -‐39.11	  (D2)	  ;	  	  -‐36.27	  (D2+D3)	  

dDsC-‐PBE/QZ4P2	   -‐40.91	  (D2)	  ;	  -‐38.07	  (D2+D3)	  

vdW-‐MB1	   -‐34	  

DMC	   -‐33.6	  ±	  0.9	  
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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.

intermolecular interactions ∣ dispersion interactions ∣ force fields ∣
DNA stability ∣ polymorphism

Atomistic simulations of molecular ensembles have greatly
contributed to our understanding of the microscopic details

of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5–7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10–14), as well as for noble gas liquids
(15–17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive C6∕R6 interatomic pairwise summation (18–22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

Results and Discussion
To accurately compute the nonadditive many-body vdWenergy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yieldC6 coefficients that are accu-
rate to ≈5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrödinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10–12). By only including interactions between dipoles, diagona-
lization of the 3N × 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdWenergy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of ≈1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:
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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.

intermolecular interactions ∣ dispersion interactions ∣ force fields ∣
DNA stability ∣ polymorphism

Atomistic simulations of molecular ensembles have greatly
contributed to our understanding of the microscopic details

of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5–7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10–14), as well as for noble gas liquids
(15–17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive C6∕R6 interatomic pairwise summation (18–22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

Results and Discussion
To accurately compute the nonadditive many-body vdWenergy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yieldC6 coefficients that are accu-
rate to ≈5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrödinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10–12). By only including interactions between dipoles, diagona-
lization of the 3N × 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdWenergy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of ≈1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:
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underestimation of 4.1 kcal∕mol compared to the full vdW-MB
model. This additional stabilization of at least 4 kcal∕mol, arising
solely from nonadditive many-body vdW contributions, is a clear
illustration of the increasingly important role played by these
higher-order effects as molecular systems become larger and more
structurally complex than the small organic molecular dimers
considered before. In the context of predicting biomolecular ligand
affinities, the difference between the DNA-ellipticine binding
energies computed using the vdW-TB and vdW-MB models repre-
sents a marked discrepancy, as a decrease of about 1 kcal∕mol in
ΔGbind, the binding free energy, corresponds to an order of mag-
nitude decrease in the predicted equilibrium binding constant. In
fact, to capture the vdW-MB energy with chemical accuracy, i.e., to
within 1 kcal∕mol, one needs to include the contributions from all
terms up to vdW-7B in the many-body vdW energy expansion
(Fig. 2). Although there is no high-level benchmark data currently
available for ellipticine binding to DNA, our findings provide com-
pelling evidence that nonadditive many-body vdW interactions
play a substantial role in the binding of drugs to targets.

To further elucidate the role of the many-body vdW energy in
biological systems, we investigated the relative energetics between
the A- and B-conformations of DNA. By modeling each confor-
mer as a right-handed double-helix of fifteen Watson–Crick base
pairs, consisting of either pure adenine-thymine (A:T) or pure
cytosine-guanine (C:G) sequences, we computed the many-body
vdW contributions to the cohesive energy of the central base pair
in A-DNA vs. B-DNA conformations (seeMethods). The resulting
energetics (Table 1) reinforce the view that there is a need for in-
cluding vdW interactions to obtain even qualitatively consistent
results—in this case, DFT predicts A-DNA to be the more stable
conformation by 4.2 and 1.9 kcal∕mol∕bp for the A:T and C:G
sequences, respectively. However, using the effective pairwise
approach to include vdW interactions is not enough to predict
a consistent relative ordering among these DNA conformers;
for both A:T and C:G DNA, the vdW-TB model destabilizes the
A-DNA conformer by 1.6 and 5.4 kcal∕mol∕bp, respectively, but
only in the C:G case is the B-DNA conformer now predicted to be
lower in energy (in our DNA model). For these systems, the ef-
fective pairwise vdW-TS method yields essentially the same results
as the vdW-TB model. Similar to the case of DNA–ellipticine
binding, the energy contributions arising from the nonadditive

vdW interactions were quite significant—the vdW-MB energy
contribution was nearly 170% (A:T) and 90% (C:G) larger than
the effective two-body vdW energy contribution. Hence, the vdW
contributions to the relative DNA conformational energetics are
dominated by many-body effects. Furthermore, the convergence
of the many-body vdW contribution in predicting DNA conforma-
tional energetics was found to be remarkably slow. To capture
80% of the vdW-MB energy for the A:Tand C:GDNA sequences,
one needs to include all contributions up to vdW-6B and vdW-5B,
respectively, whereas the same level of convergence is reached at
the vdW-3B level in the prediction of the DNA–ellipticine binding
energy (Fig. 2). With these findings in mind, we therefore con-
clude that although several other energetic contributions, e.g.,
thermal, solvent, and even nuclear quantum effects, are relevant
for the modeling of DNA, it is evident that many-body vdW inter-
actions, with energy contributions of nearly 3 kcal∕mol∕bp for A:
T DNA and almost 5 kcal∕mol∕bp for C:G DNA, play an integral
role in the conformational stability of DNA.

Having examined the many-body vdW energy contributions
to binding affinities and relative conformational energetics, we
now consider their role in predicting the relative thermodynamic
stability among polymorphs of extended molecular crystals. The
ability to characterize and distinguish competing molecular crys-
tal polymorphs, which are often very close in energy (i.e., ΔE ≈
0.1 kcal∕mol per molecule), yet exhibit quite different physical
and chemical properties, is of paramount importance in many
fields, ranging from materials science and solid-state physics to
biochemistry and pharmacology (34). In what follows, we focus
our discussion on paracetamol (acetaminophen), an over-the-
counter pharmaceutical agent used worldwide for its analgesic
and antipyretic properties, which is experimentally known to have
two polymorphs, P-I and P-II, that are essentially degenerate in
lattice energy competing for the global minimum (35). To com-
plicate matters, a recent computational study using DFT with
an empirically parameterized effective pairwise vdW correction,
identified a new polymorph, P-IV, and predicted it to lie energe-
tically between P-I and P-II, thereby challenging experimentalists
to search for this new form of paracetamol (36). Once again, we
find that the inclusion of higher-order nonadditive many-body
vdW contributions makes a significant difference; at the vdW-MB
level, the P-IV polymorph is actually destabilized with respect to
P-I and P-II by 0.79 and 0.92 kcal∕mol∕paracetamol molecule,
respectively. Under the assumption that an essential condition
for the accessibility of a given molecular crystal polymorph is that
its energy lies within thermal energy (≈0.6 kcal∕mol) of the glo-
bal minimum, this destabilization of P-IV due to the many-body
vdW energy contributions would make it virtually inaccessible to
experimental determination, as there are many other possible
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that the nonadditive many-body vdW energy contributions to the
energy difference between the experimentally observed P-I and
P-II polymorphs amounts to a mere 0.14 kcal∕mol, which is con-
sistent with the fact that both forms were identified as stable poly-
morphs. These findings reiterate the limitations of an effective
pairwise approach and further demonstrate the importance of
the many-body vdW energy in the theoretical prediction of mo-
lecular properties; because the nonadditive many-body vdW en-
ergy contributions can be significantly larger than kT , our ability
to make reliable predictions about the thermodynamic stability
among competing molecular crystal polymorphs requires an ac-
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Previous studies of noble gas clusters and fluids (11, 15–17)
found repulsive many-body vdW contributions when compared
to the pairwise vdW energy. These findings contrast with our
result that the nonadditive many-body energy stabilizes the ellip-
ticine–DNA complex with respect to the effective pairwise model.
We explain this difference by the relatively complex molecular
geometries and higher polarizability densities utilized herein

Fig. 2. Percentagewise convergence of the individual vdW-NB contributions
with respect to the vdW-MB energy. Displayed cases include the binding
energy of the DNA-ellipticine complex (blue circles) and the relative binding
energies of a single base pair in A-DNA and B-DNA consisting of pure
adenine-thymine (black triangles) and pure cytosine-guanine (red squares)
sequences. The unfilled markers at N ¼ 2 correspond to the predictions
of the vdW-TB effective pairwise model for each of the aforementioned
systems.
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i. vdW-MB—the full DFT+vdW-MB model as defined above,
which includes all many-body energy contributions within the
dipole approximation. It utilizes a range-separation parameter
obtained via global optimization of the total DFT+vdW-MB
energy on the S22 benchmark database.

ii. vdW-NB—the N-body energy contribution in the full DFT
+vdW-MB model, utilizes the same range-separation para-
meter as the DFT+vdW-MB model.

iii. vdW-TB—an effective pairwise model, which computes the
dispersion energy only via two-body interactions. To fairly re-
present the pairwise dispersion energy employed in atomistic
force field simulations, we explicitly trained the vdW-TB mod-
el on the S22 benchmark database, which is the same database
used for training the full DFT+vdW-MB model. Therefore,
the vdW-TB model effectively mimics the shorter range many-
body terms by using a larger value of the range-separation
parameter than vdW-MB.

Comparisons made between the vdW-MB and vdW-TBmodels
quantify higher-order correlation effects that can only be cap-
tured by explicitly including the nonadditive many-body vdW
contributions beyond the two-body term and cannot be mimicked
by an effective pairwise approach. Comparisons made between
the vdW-MB and vdW-NB models distinguish contributions aris-
ing from different orders in the many-body vdW energy expan-
sion. Furthermore, we also include comparisons with a different
effective pairwise approach, namely the vdW-TS model (25),
which has been extensively used in the literature for many mole-
cular and condensed-matter systems. The vdW-TS method uses
an empirical Fermi-type damping function, which distinguishes
it from the range-separated Coulomb potential employed in the
vdW-TB and vdW-MB models.

We first assessed the performance of the vdW-MB method on
the aforementioned benchmark database of prototypical non-
covalent dimers, the S22 test set (27). The mean absolute (rela-
tive) error of the vdW-MBmodel on the complete S22 database is
0.26 kcal∕mol (6.2%) compared to 0.33 kcal∕mol (7.9%) for the
vdW-TB model. In comparison, the effective pairwise vdW-TS
approach yields an error of 0.32 kcal∕mol (10.3%). As one might
expect, the vdW-MB and vdW-TB models yield essentially the
same results for small hydrogen-bonded dimers and complexes
bound by predominantly electrostatic interactions, and in most
cases, the many-body effects were found to be repulsive. In fact,
the deviation between these models is almost negligible at
0.1 kcal∕mol, with the vdW-MB model yielding better overall
agreement with the CCSD(T) reference binding energies. How-

ever, when considering only the dispersion-bound complexes
in the S22 test set the deviation between the vdW-TB and vdW-
MB models is indeed more significant. For example, the vdW-TB
model underestimates the stability of the adenine-thymine stack
(Fig. 1) by ≈1 kcal∕mol, whereas inclusion of the nonadditive
many-body effects at the vdW-MB level reduces this error by an
order of magnitude, clearly illustrating both the limitations of an
effective pairwise approach and the importance of higher-order
correlation effects in one of the simplest prototypes for non-
bonded stacking interactions in DNA. Taking the analysis one
step further, we decomposed the vdW-MB energy for the ade-
nine-thymine complex and the other π-π stacking dimers in the
S22 test set, and found that the magnitude of the vdW-3B and
vdW-4B contributions were ≈30% and ≈10% of the pairwise
vdW-2B contribution, respectively.

We also extended our study to the larger S66 database, which
was recently designed to provide a well-balanced representation
of the intermolecular interactions found in bioorganic molecular
systems by including benchmark energetics for a wider array of
noncovalent binding motifs (30). In general, the same conclusions
found above hold for the S66 database, in that both vdW-MB
and vdW-TB are able to treat small electrostatically stabilized
molecular dimers with an exceptional yet similar degree of accu-
racy. Again, we noticed a significant discrepancy between the
performance of the vdW-MB and vdW-TB models when dealing
with the expanded selection of dispersion-bound complexes pre-
sent in the S66 database—vdW-MB consistently yields larger and
more accurate interaction energies than the vdW-TB effective
pairwise approach.

Having assessed the accuracy of the vdW-MBmethod for small
organic molecules, we now examine the role of the many-body
vdW energy in the theoretical prediction of binding affinities in
larger biomolecular systems. For this purpose, we revisited ellip-
ticine, an anticancer agent whose mode of action is based on
DNA intercalation and inhibition of the topoisomerase II enzyme
(31–33). In particular, we computed the many-body vdW energy
contributions to the binding energy of a model of the DNA-inter-
calation complex consisting of ellipticine sandwiched between
two Watson-Crick bonded cytosine-guanine base pairs linked by
their phosphate sugar puckers. The resulting energetics (Table 1)
confirm that vdW interactions are essential even for a qualitative
prediction of the binding energy in this system, as the DNA-
ellipticine complex is unbound at the DFT level of theory
(ΔEbind ¼ þ5.2 kcal∕mol). Inclusion of vdW interactions using
the vdW-TB model corrects the relative thermodynamic ordering
and stabilizes the DNA-ellipticine complex by 44.3 kcal∕mol, but
once again, the effective pairwise approach underestimates the
many-body vdW contribution to the binding energy. In fact, the
contribution from the nonadditive many-body vdW interactions
is quite significant in this system, increasing the overall binding
strength of the DNA-ellipticine complex from −39.1 kcal∕mol
(vdW-TB) to −50.7 kcal∕mol (vdW-MB). Furthermore, when
using the effective pairwise vdW-TS method (25), the DNA–ellip-
ticine binding energy is predicted to be −46.6 kcal∕mol, still an

Fig. 1. Graphical depiction of the coupled many-body vdW interactions pre-
sent in the adenine-thymine dimer, a prototypical model of π–π stacking in
DNA. Examples of two-, three-, and four-body contributions are illustrated by
the dotted (red), dashed (green), and solid (black) lines, respectively.

Table 1. Binding energies for the DNA–ellipticine complex
and DNA conformers

Level of theory ΔEbind ΔEA∶T
B−A ΔEC∶G

B−A

DFT +5.2 +4.2 +1.9
vdW-TS −46.6 +2.5 −3.7
vdW-TB −39.1 +2.6 −3.5
vdW-MB −50.7 −0.1 −8.2

(Left) Binding energies (ΔEbind) for the DNA–ellipticine complex in
kcal/mol. (Right) Relative conformational energies of A-DNA and
B-DNA (ΔEB−A ¼ EB − EA) consisting of pure adenine–thymine (A:T)
and cytosine–guanine (C:G) sequences in kcal/mol per bp. All DFT
calculations were performed using the PBE functional (37).
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vdW-4B contributions were ≈30% and ≈10% of the pairwise
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systems by including benchmark energetics for a wider array of
noncovalent binding motifs (30). In general, the same conclusions
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more accurate interaction energies than the vdW-TB effective
pairwise approach.

Having assessed the accuracy of the vdW-MBmethod for small
organic molecules, we now examine the role of the many-body
vdW energy in the theoretical prediction of binding affinities in
larger biomolecular systems. For this purpose, we revisited ellip-
ticine, an anticancer agent whose mode of action is based on
DNA intercalation and inhibition of the topoisomerase II enzyme
(31–33). In particular, we computed the many-body vdW energy
contributions to the binding energy of a model of the DNA-inter-
calation complex consisting of ellipticine sandwiched between
two Watson-Crick bonded cytosine-guanine base pairs linked by
their phosphate sugar puckers. The resulting energetics (Table 1)
confirm that vdW interactions are essential even for a qualitative
prediction of the binding energy in this system, as the DNA-
ellipticine complex is unbound at the DFT level of theory
(ΔEbind ¼ þ5.2 kcal∕mol). Inclusion of vdW interactions using
the vdW-TB model corrects the relative thermodynamic ordering
and stabilizes the DNA-ellipticine complex by 44.3 kcal∕mol, but
once again, the effective pairwise approach underestimates the
many-body vdW contribution to the binding energy. In fact, the
contribution from the nonadditive many-body vdW interactions
is quite significant in this system, increasing the overall binding
strength of the DNA-ellipticine complex from −39.1 kcal∕mol
(vdW-TB) to −50.7 kcal∕mol (vdW-MB). Furthermore, when
using the effective pairwise vdW-TS method (25), the DNA–ellip-
ticine binding energy is predicted to be −46.6 kcal∕mol, still an
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DNA. Examples of two-, three-, and four-body contributions are illustrated by
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Table 1. Binding energies for the DNA–ellipticine complex
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Level of theory ΔEbind ΔEA∶T
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vdW-TS −46.6 +2.5 −3.7
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(Left) Binding energies (ΔEbind) for the DNA–ellipticine complex in
kcal/mol. (Right) Relative conformational energies of A-DNA and
B-DNA (ΔEB−A ¼ EB − EA) consisting of pure adenine–thymine (A:T)
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prediction of the binding energy in this system, as the DNA-
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-‐  QMC	  is	  a	  great	  method	  but	  expensive.	  Requires	  tuning	  on	  
supercomputers.	  

	  
-‐  Rare	  gas	  study	  confirms	  that	  the	  method	  goes	  below	  the	  

Kcal/mol	  accuracy	  and	  reproduces	  CCSD	  (T)	  results.	  
	  	  
-‐  Van	  der	  Waals	  corrected	  DFT	  methods	  have	  improved	  

greatly	  by	  the	  inclusion	  of	  Manybody	  effects.	  However,	  are	  
s,ll	  predic,ng	  energies	  widely	  spread.	  With	  a	  QMC	  
benchmark,	  the	  order	  of	  the	  manybody-‐vdw	  correc,on	  can	  
be	  controlled	  to	  reproduce	  DMC	  energies.	  	  
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•  Met	  technical/	  	  
computa,onal	  milestones	  

•  On	  track	  to	  meet	  	  
future	  milestones	  

Award	  
Decisions 

•  INCITE	  Awards	  Commilee	  comprised	  of	  LCF	  directors,	  INCITE	  
program	  manager,	  LCF	  directors	  of	  science,	  sr.	  management	  

1	  

2	  


