Correlation in correlated materials (mostly transition metal oxides)

Lucas K. Wagner University of Illinois at Urbana-Champaign • Understanding of correlated materials is mostly phenomenological

• FN-DMC (Slater-Jastrow): good energetics, but due to cancellation of errors

• Use reduced density matrices and accurate wave functions to calculate electron correlations

Transition metal oxides and attempts to describe them

Strongly correlated materials High Tc superconductivity

Phenomenological models of the physics:

- Hubbard model
- Valence bond theory

First principles calculations:

- DFT (hard to include correlation)
- Quantum chemistry (hard to apply to solids)
- Quantum Monte Carlo (fixed node?)
- GW (perturbation theory)

Phenomenological models + first principles:

- DFT+U
- DFT+DMFT

Reaction enthalpies

U helps, but hard to use predictively

Wang, Maxisch, and Ceder. PRB 73, 195107 (2006)

Problems with DFT+Hubbard:

Lots of (too much) flexibility:

- Double-counting scheme
- Level of lattice model treatment
- Basis on which to apply lattice model
- How we choose the value of U
- Do we include intersite terms?

Little *a priori* guidance!

QMC methods to give guidance?

QMC calculations on transition metal oxide materials (a very brief summary)

Early work: TMO molecules

Wagner & Mitas, Chem. Phys. Lett. 370 412 (2003) Wagner & Mitas, J. Chem. Phys. **126**, 034105 (2007)

FN-DMC(SJ) energetics performance is pretty good

General note: d-p hybridization needs to be properly described for the best results. After that,

Cohesive energies in good agreement w/experiment: MnO, FeO, NiO, BaTiO₃, ZnO, V_xO_y Equations of state: FeO Band Gap: FeO, MnO, BaTiO₃, ZnO

- Needs and Towler Int. J. Mod. Phys. B. 17 5425 (2003)
- Wagner, J. Phys.: Condens. Matter 19 343201 (2007)
- Kolorenc and Mitas, Phys. Rev. Lett. 101, 185502 (2008)
- Kolorenc, Hu, and Mitas, Phys. Rev. B 82, 115108 (2010)
- Ertekin, Wagner, and Grossman, (in preparation)
- Bande and Luchow, Phys. Chem. Chem. Phys., 2008, 10, 3371

Signs of trouble: TMO molecules

Bond length and binding energy are very close to experiment when using B3LYP orbitals

But the dipole moment still changes a lot with multiple determinants!

Despite encouraging energetic performance, there are indications that the wave function is not very good at the DMC(SJ) level!

Going forward

- Guess wave functions (hope they work)
- General wave function expansion (but the space is exponential!)
- Understand the physics (too hard?)

Analyzing electron correlation using reduced density matrices

Understand the physics

This has two purposes:

- Get better accuracy in QMC
- Help understand the physics of TMO materials

Strong correlations?

Physicists: Strong electron-electron term in effective low-energy Hamiltonian (Hubbard U)

Chemists: Large "static" correlation (left-right correlation)

Electron in place A \rightarrow another electron not in place A

Correlation in electron gas

$$\hat{H} = -\frac{1}{2} \sum_i \nabla_i^2 + \sum_{i < j} \frac{1}{r_{ij}}$$

High density: kinetic energy dominates

Left-right correlation: H₂ molecule

Electron-nucleus and kinetic energy dominate

Electron-nucleus smaller, kinetic energy smaller: Electron on A \rightarrow other electron on B

Introduction to density matrices

Ansatz: $\Psi(r_1, r_2) = a_1 \phi_1(r_1) \phi_1(r_2) - a_2 \phi_2(r_1) \phi_2(r_2)$

$$\begin{split} \Psi(r_1, r_2) &= a_1 \phi_1(r_1) \phi_1(r_2) - a_2 \phi_2(r_1) \phi_2(r_2) \\ \rho_{ij}^{1RDM} &= \langle \Psi | c_i^{\dagger} c_j | \Psi \rangle \\ \rho_{ij,ij}^{2RDM} &= \begin{pmatrix} a_1^2 & 0 \\ 0 & a_2^2 \end{pmatrix} \\ \rho_d^{2RDM} &= \begin{pmatrix} a_1^2 & 0 \\ 0 & a_2^2 \end{pmatrix} \\ \rho_d^{2RDM} &= \begin{pmatrix} a_1^2 & 0 \\ 0 & a_2^2 \end{pmatrix} \\ \rho_{ij}^c &= \rho_{ij,ij}^{2RDM} - \rho_{ii}^{1RDM} \rho_{jj}^{1RDM} \\ \rho_j^c &= \begin{pmatrix} a_1^2 - a_1^4 & -a_1^2 a_2^2 \\ -a_1^2 a_2^2 & a_2^2 - a_2^4 \end{pmatrix} \end{split}$$

$$\begin{aligned} \mathbf{General \, case} & \Psi(r_1, r_2) = \phi_1(r_1)\phi_1(r_1) \\ \rho^{1RDM} = \begin{pmatrix} a_1^2 & 0 \\ 0 & a_2^2 \end{pmatrix} & \rho^{1RDM} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\ \rho^{2RDM}_d = \begin{pmatrix} a_1^2 & 0 \\ 0 & a_2^2 \end{pmatrix} & \rho^{2RDM}_d = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\ \rho^c = \begin{pmatrix} a_1^2 - a_1^4 & -a_1^2 a_2^2 \\ -a_1^2 a_2^2 & a_2^2 - a_2^4 \end{pmatrix} & \rho^c = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

2-RDM diagonal

Relation to Hubbard picture

If we change basis:

$$\rho^{c} = \frac{1}{2} \begin{pmatrix} -a_{1}a_{2} & a_{1}a_{2} \\ a_{1}a_{2} & -a_{1}a_{2} \end{pmatrix}$$

$$\rho^{c} = \begin{pmatrix} a_{1}^{2} - a_{1}^{4} & -a_{1}^{2}a_{2}^{2} \\ -a_{1}^{2}a_{2}^{2} & a_{2}^{2} - a_{2}^{4} \end{pmatrix}$$

Only on-site repulsion:

Negative

More complex structure:

$$\rho^{c} = \begin{pmatrix} a_{1}^{2} - a_{1}^{4} & -a_{1}^{2}a_{2}^{2} \\ -a_{1}^{2}a_{2}^{2} & a_{2}^{2} - a_{2}^{4} \end{pmatrix}$$

Most sets of four orbitals give rise to real-space repulsion with this pattern Including combinations of localized and diffuse orbitals.

$$\rho^{c} = \frac{1}{2} \begin{pmatrix} -a_{1}a_{2} & a_{1}a_{2} \\ a_{1}a_{2} & -a_{1}a_{2} \end{pmatrix}$$

Localized sets of orbitals give this pattern

Evaluating electron correlation in transition metal oxides

- Use small molecules
- Expand in Slater determinants, only doubles
- Converge the 1-RDM of the wave function with respect to determinants

Cutoff threshold

				_	0 2	2 4		6	8	10	
				0	3.0 1.1 1	.4		-1.5 -1.1	-2.6	-	
				ſ	0.5 0.8 S 0.	.7 0.7	0.5	-1.4			
				2	0.	.6	0.6	-0.5		-	
				4 -		-0.7		-0.6		_	
				c	0.6		-0.9				
				6 -				-0.6		-	
				8 -	4.5 -1.2 -2	.1 0.9 0.6	0.9	1.1 1.2	1.8	-	
				10 -	-0.6 -0 -0.5	.5 .5				-	
	σ_{dp}	π_{dp}	π_{dp}	σ_d	δ_d	δ_d		π^*_{dp})	π^*_{dp}	σ^*_{dp}
Nominal	2	2	2	1	1	1		1		1	0
Large prob	0	2	2	1	1	1		1		1	2
	0	2	2	2	1	1		1		1	1
	0	2	2	1	2	1		1		1	1
	0	2	2	1	1	2		1		1	1
	0	2	2	1	1	1		2		1	1
	0	2	2	1	1	1		1		2	1

Localized orbitals: MnO

Rho[^]c for all 5 TM monoxides

0	- 0.5	0.4	0.4			0.2		-0.1	-0.3	-0.4	-0.3 -
	0.3	0.8	0.6		-0.2	-0.1			-0.4	-0.3	-0.4
2	- 0.5	0.5	0.8		-0.2		-0.2		-0.4	-0.2	-0.5 -
	0.2	0.1		-0.2	-0.1				-0.1		
4	- 0.1	0.3			-0.6	0.2		-0.1			-
	-0.2	-0.1									
6	-		-0.2		0.1						0.2 -
	-0.1		-0.1		0.4						0.3
8	0.4	-0.3	-0.2	0.1	0.1	0.3	0.1		0.1	0.1	-
	-0.4	-0.6	-0.3		0.3		0.3		0.1	0.5	0.3
10	0.4	-0.4	-0.8	0.1	0.2		0.1	0.1	0.2		0.4 -

8

10

ScO

TiO

VO

TM dioxides: the angle

State	DFT	+U	$+U _{r_0}$	+U+V	Expt.
4B_1 MnO ₂	128	180	140	143	135 ± 5
${}^{3}B_{1}$ FeO ₂	138	180	155	156	150 ± 10
$^{2}\Sigma_{g}^{+}$ CoO ₂	158	180	180	180	180

Kulik & Marzari, J. Chem. Phys. 134, 094103 (2011)

DMC(SJ) geometries: results

	DFT	DMC(SJ)	Exp
MnO ₂	128	140+/-10	135+/-5
FeO ₂	138	150+/-10	150+/-10
CoO ₂	158	180+/-20	180

Doubly occupied states

														<u>×</u>	
		0		2		4		6		8		10		12	
	0	1.0		0.3	1.0	0.5	0.5	-0.5	-0.3		-0.6	-0.5			
					0.3		0.7	0.3	1.1		-0.5		0.4		
	2	0.8	0.9	1.4	0.7	0.7	0.9	-0.3	-1.6		-1.5	-1.8		-0.3	
					1.0	0.9	0.7			-0.5	-0.4				
	4	0.5	0.6	0.5	0.6		1.2	0.7	-2.6	-0.3	-0.5	-1.5	-1.3	0.8	
	E	-0.4		0.5	0.6	0.4	1.2	0.5	.1.1	-0.6		-0.3	0.7	0.3	
	0	-0.4	-0.4	-0.3		0.4	0.3	0.3	2.7	-0.9	0.4		1.6	-0.8	
	8	-0.4	-0.4	0.5		0.5	0.5	0.6	0.6	-0.6		0.9		0.0	
		-1.0	-1.7	-2.8	-1.4	-0.5	-0.6	0.6	1.6	-0.6	2.1	1.9	0.5	0.5	
	10	-1.5	-0.4	-0.8	-1.2	-1.1	-0.6	1.7	0.6	1.0	0.3	2.5			
				-0.9	0.6	-1.2	-0.8	0.9	1.1	0.7	0.6				0.4
	12							0.4		0.5	0.7				
									0.5	0.3					

Symmetric left-right correlation

Enabled by partial d occupation

Special thanks:

David Ceperley and his group

UIUC Physics department Taub campus cluster NSF XSEDE computer resources