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HANDE-QMC code

Highly Accurate N-Determinant Quantum Monte Carlo

» Systems:

Hubbard model (local and Bloch orbitals)
Uniform electron gas

Heisenberg model

Molecular systems via precomputed integrals

» Methods:

» Full Configuration Interaction

Full Configuration Interaction Quantum Monte Carlo
Coupled Cluster Monte Carlo

Initiator approximation

Folded spectrum FCIQMC

Density Matrix Quantum Monte Carlo
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» Much more to come...

Available to collaborators. Open-source release in the next year-ish.
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Stochastic diagonalisation

Essentially exploit the power method for finding the eigenstate, cg
with the largest absolute eigenvalue of a matrix, M:

1. Take a starting vector, n(¢ = 0) with a non-zero overlap with
co; n(0) = > . zic;.
2. Let m(t + AT) = nz(t) + Zj Mijnj(t)AT.
3. Contribution from eigenstate c; decays as
(14 ATXN) /(1 + AT)g)) /A7
4. n(t — 00) x ¢p.
— Can easily be performed stochastically by sampling the action
of M on n'.

Win if memory demands are less than two vectors the size of the
Hilbert space!

!G.H. Booth, A.J.W. Thom and Ali Alavi, JCP 131-054106 (2009)



Imaginary-time Schrodinger equation

n(r = kA7) = (I— HA7)*n(0) (1)

is a first-order approximation to

n(r) = e ¥n(0) (2)
which is the solution to the imaginary-time Schrodinger equation:
dng
S <3>
j

FCIQMC appears to be particularly efficient for (some) quantum
systems.



FCIQMC algorithm

‘ for each occupied ’
site i

— energy contribution:
for each psip, sign | Hig — Sbig

si, on i — 5
1o

annihilate parent
and child psips

select a random
site, j

spawn new psip on j
with probability
|Hij = S(Sij|A7'
~ p(l)

—sign ((Hij — Sds5) s1)




Example: CN

UHF single-particle basis; cc-pVDZ; CAS (9,12); 98476

determinants.
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FCIQMC: successes and failures

X X NN

Exact (within finite basis results) for wide variety of atoms
and molecules

Benchmark results for ionisation and electron affinity energies
Largest calculation done: > O(10%) [largest FCl: O(10'°)]
Methane is ‘hard’!

Hubbard model is a disaster...



Hubbard model plateau
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18 site 2D Hubbard model at k = (0, 0):
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nihilation is cruci




FCIQMC without annihilation

(Let T=—-H-SI)=T"-T".)
Separate, but coupled, populations of positive and negative psips?:

dn _ +,+
-3 (5 + ),
j
dn;
— +
= 2 (T Ty
j
Can combine in-phase and out-of-phase:

) 5 (g 1g) (o ).
cl(7fr J @

)5 (1) ()

J

2JSS, N.S. Blunt, WMCF, JCP 136 054110 (2012)



Convergence to H" + H™
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Effect of annihilation

ﬂ Z<T+n++T n; )

gy ij o
Jj

dn;
i +
dr Z (Tl.] ny Ty )




Effect of annihilation

dni"
_E: +.4 +,—
d—;— : (T n; —i—TlJnJ>—2/mini

dn.

_ + +,—

d; —Z<T n —i—TlJnJ)—kaini
J

Destabilises in-phase state n™ +n~.
Leaves true solution, n™ — n~, unchanged.



Sign-problem-free systems

If TT+ T~ and T™ — T~ are related by a unitary transform then:
» identical set of eigenvalues;
> identical growth rates;
» no annihilation events;

> no sign problem in FCIQMC =- sample FCI ground state with
arbitrary number of psips.

Sign-problem-free systems: 1D Hubbard model in a local orbital
basis; Heisenberg bipartite lattices.
Example: 18-site, 18-electron 1D Hubbard model at U = ¢:

basis  Hilbert space plateau height  # psips energy (t

)
Bloch  1.31 x 108 6.9 x 10° 2.3 x 107  —18.84248(8)
local  2.36 x 10° n/a 2.8 x 10°  —18.8423(3)



Population dynamics

(Letp=nt+n andn=n"—-n".)

=3 (1 1) m ot
J
i (9)

=2 (7 -7 )

J

As 7 — o0, n(7) tends to ground-state wavefunction, ng:

dpi

D3 (T + T ) oy — v+ a2 T (10)

J

= Initial exponential growth followed by a plateau followed by a
second (slower) exponential growth.



One-component analogue

dps
dl;l ~ (ler + TJ) pj — Kkpi + kaZeXmTn2. (11)
J

One-component analogue of population ODE:
dp

2
7 = Vimaxp — kp® + K (noeTmaxT) . (12)



One-component analogue

One-component analogue of population ODE:

dp

2
7= = Vmaxp — kp® + K (noeTmaxT) . (11)

Riccati differential equations can be solved:

1 du
== 12
Vinax

u(’l') :Cl'OFI <;1— ma ;Z)

2Crmax (13)
V.
Vmax/QTmax . F . 1 max |
+ 2z 04’1 (7 + 2Tmax’z> )

2,2 2T maxT

L= e T (14)

4772

max



Model population dynamics
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Hubbard model: plateau height o< U/t

Kinetic contributions (o t) to the Hamiltonian matrix are diagonal
in the Bloch basis.

dn;
B3 (T + Ty ) by — v} + waeTmmnd (15)
J
U
0P (1 Ty ) oy S (16)
i

i

Total population psip population at the plateau:

Zpi = Ung (17)



Accessing excited states in FCIQMC (Will Handley)

Propagator (I — HAT) only gives access to the maximal eigenstate
of H.

Use folded spectrum method:

M= (H —£I) (18)
and solve for M2:

ni(T + AT) = Tli(T) + Z Z (Miijk — Séijéjk) ATTLk(T) (19)
ik

Sample action of (H — I)? — ST rather than action of H — ST.



Energy Level/eV
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Excitation generation
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Preliminary results: 3 x 3 Hubbard model, U =t, 8
electrons
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Conclusions

» Negative sign problem in FCIQMC is due to instability to a
non-physical state.

» Annihilation ensures convergence to the true ground state of
the Hamiltonian.

» Characteristic population dynamics is due to the interplay
between the instability, annihilation and the true ground state.

> Severity of the sign problem is dependent upon the underlying
basis.

» Excited states accessible via the folded spectrum approach.



Bonus slides



Heisenberg spin model (Nick Blunt)

H=17) 5.5 (20)
<ij>
5 x 5 anti-ferromagnetic (J > 0) triangular lattice with periodic
boundary conditions.

No. of psips/107
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Time-step error (in limit S — Ej)

Exact propagator e H-SDAT. ' — 1,

Approximate propagator I — (H — ST)Ar:
Amax = 1 — (Eo — S)AT =1 or
Amax = 1 — (Fmax — S)AT =1 — (Emax — Ep)AT.

Disaster occurs if

AT > ————— 21
Emax - EO ( )



Time step and the sign problem

Hamiltonian matrices are (often) diagonally dominant.

Sign problem is actually not so bad if a psip cannot create more
than one psip of the opposite sign on its own basis function.

Example: uniform electron gas r, = 1.0, n = 43.

M;; Lowest eigenvalue (a.u.)
(Di|H|D;) 5.631330
(D;|H|D;)| -25.032719

—|
—|(Di|H|D;)|,i#j  5.349003

*http://github.com/jsspencer/toy_fci


http://github.com/jsspencer/toy_fci

Convergence to the ground state

dp; _
D=1 + 1) i — il =) (22)
J
After the plateau the shift is adjusted to the ground state energy:

_dpi _

O_dT

2.2
K(ni — py) (23)
J
= basis functions occupied by positive or negative psips.
n: stochastic representation of the ground-state wavefunction

[n|: psip population
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