The (negative) sign problem in Full Configuration Interaction Quantum Monte Carlo and other short stories

James Spencer^{1,2} and Matthew Foulkes²

 $^{1}\mbox{\sc Thomas}$ Young Centre, Dept. of Materials, Imperial College London

²Condensed Matter Theory, Dept. of Physics, Imperial College London

July 30, 2012

HANDE-QMC code

Highly Accurate N-Determinant Quantum Monte Carlo

- Systems:
 - Hubbard model (local and Bloch orbitals)
 - Uniform electron gas
 - Heisenberg model
 - Molecular systems via precomputed integrals
- Methods:
 - Full Configuration Interaction
 - ► Full Configuration Interaction Quantum Monte Carlo
 - Coupled Cluster Monte Carlo
 - Initiator approximation
 - Folded spectrum FCIQMC
 - Density Matrix Quantum Monte Carlo
- Much more to come...

Available to collaborators. Open-source release in the next year-ish.

Acknowledgements

- UROP students (funding: EPSRC via CDT on Theory and Simulation of Materials)
 - ▶ Joe Weston (Imperial)
 - Nick Blunt (Imperial)
 - Will Handley (Cambridge)
- MSci students
 - Nick Blunt
 - Tom Rogers
- Alex Thom
- Richard Needs

Stochastic diagonalisation

Essentially exploit the power method for finding the eigenstate, \mathbf{c}_0 with the largest absolute eigenvalue of a matrix, \mathbf{M} :

- 1. Take a starting vector, $\mathbf{n}(t=0)$ with a non-zero overlap with \mathbf{c}_0 ; $\mathbf{n}(0) = \sum_i x_i \mathbf{c}_i$.
- 2. Let $n_i(t + \Delta \tau) = n_i(t) + \sum_j M_{ij} n_j(t) \Delta \tau$.
- 3. Contribution from eigenstate \mathbf{c}_i decays as $((1 + \Delta \tau \lambda_i)/(1 + \Delta \tau \lambda_0))^{t/\Delta \tau}$.
- 4. $\mathbf{n}(t \to \infty) \propto \mathbf{c}_0$.
- ightarrow Can easily be performed stochastically by sampling the action of ${\bf M}$ on ${\bf n}^1$.

Win if memory demands are less than two vectors the size of the Hilbert space!

¹G.H. Booth, A.J.W. Thom and Ali Alavi, JCP 131-054106 (2009) → ≥ → ≥ → ∞ ∞

Imaginary-time Schrödinger equation

$$\mathbf{n}(\tau = k\Delta\tau) = (\mathbf{I} - \mathbf{H}\Delta\tau)^k \mathbf{n}(0) \tag{1}$$

is a first-order approximation to

$$\mathbf{n}(\tau) = e^{-\mathbf{H}\tau} \mathbf{n}(0) \tag{2}$$

which is the solution to the imaginary-time Schrödinger equation:

$$\frac{dn_{\mathbf{i}}}{d\tau} = -\sum_{\mathbf{j}} H_{\mathbf{i}\mathbf{j}} n_{\mathbf{j}}.$$
 (3)

FCIQMC appears to be particularly efficient for (some) quantum systems.

Example: CN

UHF single-particle basis; cc-pVDZ; CAS (9,12); 98476 determinants.

FCIQMC: successes and failures

- ✓ Exact (within finite basis results) for wide variety of atoms and molecules
- ✓ Benchmark results for ionisation and electron affinity energies
- ✓ Largest calculation done: $> \mathcal{O}(10^{15})$ [largest FCI: $\mathcal{O}(10^{10})$]
- × Methane is 'hard'!
- × Hubbard model is a disaster...

Hubbard model plateau

$$\hat{H} = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma} \hat{c}_{\mathbf{r}, \sigma}^{\dagger} \hat{c}_{\mathbf{r}', \sigma} + U \sum_{\mathbf{r}} \hat{n}_{\mathbf{r}, \uparrow} \hat{n}_{\mathbf{r}, \downarrow}$$
(4)

$$\hat{H} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} \hat{c}_{\mathbf{k},\sigma}^{\dagger} \hat{c}_{\mathbf{k},\sigma} + \frac{U}{M} \sum_{\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}} \hat{c}_{\mathbf{k}_{1},\uparrow}^{\dagger} \hat{c}_{\mathbf{k}_{2},\downarrow}^{\dagger} \hat{c}_{\mathbf{k}_{3},\downarrow} \hat{c}_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3},\uparrow}, \quad (5)$$

18 site 2D Hubbard model at $\mathbf{k} = (0, 0)$:

Annihilation is crucial

FCIQMC without annihilation

(Let
$$\mathbf{T} = -(\mathbf{H} - S\mathbf{I}) = \mathbf{T}^+ - \mathbf{T}^-$$
.)

Separate, but coupled, populations of positive and negative psips²:

$$\frac{dn_{\mathbf{i}}^{+}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{ij}}^{+} n_{\mathbf{j}}^{+} + T_{\mathbf{ij}}^{-} n_{\mathbf{j}}^{-} \right),$$

$$\frac{dn_{\mathbf{i}}^{-}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{ij}}^{+} n_{\mathbf{j}}^{-} + T_{\mathbf{ij}}^{-} n_{\mathbf{j}}^{+} \right).$$
(6)

Can combine in-phase and out-of-phase:

$$\frac{d\left(n_{\mathbf{i}}^{+} + n_{\mathbf{i}}^{-}\right)}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{i}\mathbf{j}}^{+} + T_{\mathbf{i}\mathbf{j}}^{-}\right) \left(n_{\mathbf{j}}^{+} + n_{\mathbf{j}}^{-}\right),$$

$$\frac{d\left(n_{\mathbf{i}}^{+} - n_{\mathbf{i}}^{-}\right)}{d\tau} = \sum_{\mathbf{i}} \left(T_{\mathbf{i}\mathbf{j}}^{+} - T_{\mathbf{i}\mathbf{j}}^{-}\right) \left(n_{\mathbf{j}}^{+} - n_{\mathbf{j}}^{-}\right).$$
(7)

²JSS, N.S. Blunt, WMCF, JCP 136 054110 (2012) □ > ← □ > ← □ > →

Convergence to $\mathbf{H}^+ + \mathbf{H}^-$

Effect of annihilation

$$\frac{dn_{\mathbf{i}}^{+}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{ij}}^{+} n_{\mathbf{j}}^{+} + T_{\mathbf{ij}}^{-} n_{\mathbf{j}}^{-} \right)
\frac{dn_{\mathbf{i}}^{-}}{d\tau} = \sum_{\mathbf{i}} \left(T_{\mathbf{ij}}^{+} n_{\mathbf{j}}^{-} + T_{\mathbf{ij}}^{-} n_{\mathbf{j}}^{+} \right)$$
(8)

Effect of annihilation

$$\frac{dn_{\mathbf{i}}^{+}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{i}\mathbf{j}}^{+} n_{\mathbf{j}}^{+} + T_{\mathbf{i}\mathbf{j}}^{-} n_{\mathbf{j}}^{-} \right) - 2\kappa n_{\mathbf{i}}^{+} n_{\mathbf{i}}^{-}$$

$$\frac{dn_{\mathbf{i}}^{-}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{i}\mathbf{j}}^{+} n_{\mathbf{j}}^{-} + T_{\mathbf{i}\mathbf{j}}^{-} n_{\mathbf{j}}^{+} \right) - 2\kappa n_{\mathbf{i}}^{+} n_{\mathbf{i}}^{-}$$
(8)

Destabilises in-phase state $\mathbf{n}^+ + \mathbf{n}^-$. Leaves true solution, $\mathbf{n}^+ - \mathbf{n}^-$, unchanged.

Sign-problem-free systems

If $\mathbf{T}^+ + \mathbf{T}^-$ and $\mathbf{T}^+ - \mathbf{T}^-$ are related by a unitary transform then:

- identical set of eigenvalues;
- identical growth rates;
- no annihilation events;
- ▶ no sign problem in FCIQMC ⇒ sample FCI ground state with arbitrary number of psips.

Sign-problem-free systems: 1D Hubbard model in a local orbital basis; Heisenberg bipartite lattices.

Example: 18-site, 18-electron 1D Hubbard model at U=t:

basis	Hilbert space	plateau height	# psips	energy (t)
Bloch	1.31×10^{8}	6.9×10^{6}	2.3×10^{7}	-18.84248(8)
local	2.36×10^{9}	n/a	2.8×10^{5}	-18.8423(3)

Population dynamics

(Let
$$\mathbf{p} = \mathbf{n}^{+} + \mathbf{n}^{-}$$
 and $\mathbf{n} = \mathbf{n}^{+} - \mathbf{n}^{-}$.)
$$\frac{dp_{\mathbf{i}}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{ij}}^{+} + T_{\mathbf{ij}}^{-} \right) p_{\mathbf{j}} - \kappa (p_{\mathbf{i}}^{2} - n_{\mathbf{i}}^{2})$$

$$\frac{dn_{\mathbf{i}}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{ij}}^{+} - T_{\mathbf{ij}}^{-} \right) n_{\mathbf{j}}.$$
(9)

As $\tau \to \infty$, $\mathbf{n}(\tau)$ tends to ground-state wavefunction, \mathbf{n}_0 :

$$\frac{dp_{\mathbf{i}}}{d\tau} \approx \sum_{\mathbf{j}} \left(T_{\mathbf{i}\mathbf{j}}^{+} + T_{\mathbf{i}\mathbf{j}}^{-} \right) p_{\mathbf{j}} - \kappa p_{\mathbf{i}}^{2} + \kappa \alpha^{2} e^{2T_{\mathsf{max}}\tau} n_{0\mathbf{i}}^{2}.$$
 (10)

 \Rightarrow Initial exponential growth followed by a plateau followed by a second (slower) exponential growth.

One-component analogue

$$\frac{dp_{\mathbf{i}}}{d\tau} \approx \sum_{\mathbf{i}} \left(T_{\mathbf{i}\mathbf{j}}^{+} + T_{\mathbf{i}\mathbf{j}}^{-} \right) p_{\mathbf{j}} - \kappa p_{\mathbf{i}}^{2} + \kappa \alpha^{2} e^{2T_{\mathsf{max}}\tau} n_{0\mathbf{i}}^{2}.$$
 (11)

One-component analogue of population ODE:

$$\frac{dp}{d\tau} = V_{\text{max}}p - \kappa p^2 + \kappa \left(n_0 e^{T_{\text{max}}\tau}\right)^2. \tag{12}$$

One-component analogue

One-component analogue of population ODE:

$$\frac{dp}{d\tau} = V_{\text{max}}p - \kappa p^2 + \kappa \left(n_0 e^{T_{\text{max}}\tau}\right)^2. \tag{11}$$

Riccati differential equations can be solved:

$$p(\tau) = \frac{1}{\kappa u} \frac{du}{d\tau},\tag{12}$$

$$u(\tau) = c_1 \cdot {}_{0}F_{1}\left(; 1 - \frac{V_{\text{max}}}{2T_{\text{max}}}; z\right) + c_2 z^{V_{\text{max}}/2T_{\text{max}}} \cdot {}_{0}F_{1}\left(; 1 + \frac{V_{\text{max}}}{2T_{\text{max}}}; z\right),$$

$$(13)$$

$$z = \frac{\kappa^2 n_0^2 e^{2T_{\text{max}}\tau}}{4T_{\text{max}}^2}.$$
 (14)

Model population dynamics

Hubbard model: plateau height $\propto U/t$

Kinetic contributions ($\propto t$) to the Hamiltonian matrix are diagonal in the Bloch basis.

$$\frac{dp_{\mathbf{i}}}{d\tau} = \sum_{\mathbf{i}} \left(T_{\mathbf{i}\mathbf{j}}^{+} + T_{\mathbf{i}\mathbf{j}}^{-} \right) p_{\mathbf{j}} - \kappa p_{\mathbf{i}}^{2} + \kappa \alpha^{2} e^{2T_{\mathsf{max}}\tau} n_{0\mathbf{i}}^{2}$$
(15)

$$U^{2} \sum_{\mathbf{i}\mathbf{i}} \left(T_{\mathbf{i}\mathbf{j}}^{+\prime} + T_{\mathbf{i}\mathbf{j}}^{-\prime} \right) p_{\mathbf{j}}^{\prime} \approx \kappa U^{2} \sum_{\mathbf{i}} p_{\mathbf{i}}^{\prime 2}.$$
 (16)

Total population psip population at the plateau:

$$\sum_{\mathbf{i}} p_{\mathbf{i}} = U \sum_{\mathbf{i}} p_{\mathbf{i}}' \tag{17}$$

Accessing excited states in FCIQMC (Will Handley)

Propagator $(\mathbf{I} - \mathbf{H} \Delta \tau)$ only gives access to the maximal eigenstate of \mathbf{H} .

Use folded spectrum method:

$$\mathbf{M} = (\mathbf{H} - \varepsilon \mathbf{I}) \tag{18}$$

and solve for \mathbf{M}^2 :

$$n_{\mathbf{i}}(\tau + \Delta \tau) = n_{\mathbf{i}}(\tau) + \sum_{\mathbf{i}} \sum_{\mathbf{k}} (M_{\mathbf{i}\mathbf{j}} M_{\mathbf{j}\mathbf{k}} - S \delta_{\mathbf{i}\mathbf{j}} \delta_{\mathbf{j}\mathbf{k}}) \, \Delta \tau n_{\mathbf{k}}(\tau)$$
 (19)

Sample action of $(\mathbf{H} - \varepsilon \mathbf{I})^2 - S\mathbf{I}$ rather than action of $\mathbf{H} - S\mathbf{I}$.

Excitation generation

Preliminary results: 3×3 Hubbard model, $U=t,\,8$ electrons

Conclusions

- Negative sign problem in FCIQMC is due to instability to a non-physical state.
- Annihilation ensures convergence to the true ground state of the Hamiltonian.
- ► Characteristic population dynamics is due to the interplay between the instability, annihilation and the true ground state.
- Severity of the sign problem is dependent upon the underlying basis.
- Excited states accessible via the folded spectrum approach.

Bonus slides

Heisenberg spin model (Nick Blunt)

$$\hat{H} = J \sum_{\langle ij \rangle} \hat{S}_i.\hat{S}_j \tag{20}$$

 5×5 anti-ferromagnetic (J>0) triangular lattice with periodic boundary conditions.

Time-step error (in limit $S \to E_0$)

Exact propagator $e^{-(\mathbf{H}-S\mathbf{I})\Delta\tau}$: $\lambda_0=1$.

Approximate propagator $\mathbf{I} - (\mathbf{H} - S\mathbf{I})\Delta \tau$:

$$\begin{split} \lambda_{\text{max}} &= 1 - (E_0 - S)\Delta \tau = 1 \text{ or } \\ \lambda_{\text{max}} &= 1 - (E_{\text{max}} - S)\Delta \tau = 1 - (E_{\text{max}} - E_0)\Delta \tau. \end{split}$$

Disaster occurs if

$$\Delta \tau > \frac{2}{E_{\text{max}} - E_0} \tag{21}$$

Time step and the sign problem

Hamiltonian matrices are (often) diagonally dominant.

Sign problem is actually not so bad if a psip cannot create more than one psip of the opposite sign on its own basis function.

Example: uniform electron gas $r_s = 1.0, n = 4^3$.

$M_{f ij}$	Lowest eigenvalue (a.u.)
$\langle D_{\mathbf{i}} \hat{H} D_{\mathbf{j}} angle$	5.631330
$- \langle D_{\mathbf{i}} \hat{H} D_{\mathbf{j}}\rangle $	-25.032719
$- \langle D_{\mathbf{i}} \hat{H} D_{\mathbf{j}}\rangle , \mathbf{i} \neq \mathbf{j}$	5.349003

³http://github.com/jsspencer/toy_fci

Convergence to the ground state

$$\frac{dp_{\mathbf{i}}}{d\tau} = \sum_{\mathbf{j}} \left(T_{\mathbf{i}\mathbf{j}}^{+} + T_{\mathbf{i}\mathbf{j}}^{-} \right) p_{\mathbf{j}} - \kappa (p_{\mathbf{i}}^{2} - n_{\mathbf{i}}^{2})$$
 (22)

After the plateau the shift is adjusted to the ground state energy:

$$0 = \frac{dp_{\mathbf{i}}}{d\tau} \approx \sum_{\mathbf{i}} \kappa (n_{\mathbf{i}}^2 - p_{\mathbf{i}}^2)$$
 (23)

 \Rightarrow basis functions occupied by positive or negative psips. \mathbf{n} : stochastic representation of the ground-state wavefunction $|\mathbf{n}|$: psip population