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Motivations

—> The Hubbard model has been a long standing
model for too many years.

- Experiments on optical lattices can solve
fundamental questions about the model (soon?)

= Quantum Monte Carlo can exploit massive
parallelism 1n modern supercomputers, a factor
~10000 faster than 20 years ago.
Sampling the <Sign> is the easiest task for
parallelism, replicas and average!

—> More information (before optical lattices)?




Outline

From RVB insulator to High-Tc superconductivity
with no electron-phonon coupling and repulsion (!)

Quantum Monte Carlo and Petaflop supercomputer
a new possibility to understand electron correlation

The honeycomb lattice = no spin liquid phase
(contrary to previous claims)

How to survive with the sign problem?

Recent results by massive sampling/extrapolation:
Small but non vanishing effect > Phase diagram?



Resonating valence bond (RVB)

In this theory the chemical valence bond
is described as a singlet pair of electrons

%qm_\m) W (W, () + a<>b]

spin up and spin down electrons in a spin singlet state
a and b are nuclear indexes

The true quantum state of a compound is a
superposition or resonance of many valence bond
states. The superposition usually improves the

variational energy of the state.

L. Pauling, Phys. Rev. 54, 899 (1938)

Linus Pauling



Example of RVB

Benzene C.H,

single bond double bond

6 valence electrons in 6 sites (2p, typTép)”’e“’
two ways to arrange nearest neighbor bonds (Kekule’ states)

The rule: two singlet bonds cannot overlap on
the same Carbon atom otherwise two electrons
feel a too large Coulomb repulsion.
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Kekule’ valence bonds

DL,

Dewar valence bond (believed less important)

WD+ (/)




Graphene layers can be experimentally prepared




Definition of spin liquid

A spin state with N A

| | Nee
no magnetic order (classical trivial) 4 v

no broken translation symmetry (less trivial):

no Dimer state
(Read,Sachdev)
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isa Spin liquid



Recent development of supercomputers is based on an
increased number of cores/node. But in this trend the
bandwidth of the node increases much slower and the
“’delayed updates’ technique becomes more and more crucial.
Essentially one tranforms matrix-updates (bandwidth limited)
In matrix-matrix fast operations LxK ..
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Recent exciting result on the Hubbard model. ..
Muramatsu group, Nature 2010.

Alt
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No broken symmetry but a full gap at U/t~4...
this 1s an RVB phase...



The auxihiary field technique based on the
Hubbard-Stratonovich (Hirsch) transformation

provides a big reduction of the sign problem as:

The discrete HST (Hirsch '85):

, Eexp[ﬂa(rz -n )]

cosh(A) =exp(g/2)

exp[g(n, —n )] =



With this transformation the true propagator
1S a superposition of ‘’easy’ one-body propagators:

[y, ) =exp(-HT)|y,) = Y U, (7,0)|y,)
{o}

and, if |y, ) is a Slater determinant, U, (7,0)|y, ) can be evaluated.

We can compute any correlation function O with standard MC

with weight: W[o]=(y,|U, (t,0)|y,):
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Finite size scahng up to 2592 sites (previous 648)!
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The charge-charge correlation should decay as ] / 7+
in the semimetal, as opposed to exponential in the
insulator, thus by plotting L' o(L_ )
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We clearly see a charge transition at U/t~3.75(5)
consistent with the magnetic one=> no spin liquid ):
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The proposed spin liquid should have a spin gap

...but no spin gap was found by direct evaluation
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First results on a model without sign problem:

Much larger size = no spin liquid in a model
with no frustration.

As a consequence of the Murphy’s law

“’No 1nteresting results can be obtained with a
fermionic model without sign problem....”

but this 1s under debate. There are exceptions, but
have to be also tested on much larger sizes and
lower temperatures.




Cuprates

Phase diagram: temperature

vs. doping

quasi-2D structure
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The presence of holes (empty sites) allows
charge (super-) current and superconductivity




RVB-> the actual order parameter ~ x (doping) ‘

0.0=2
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RVB Mott insulator x. Fermi

b = <(c+c+ )d_wave> = (0 only for x >0




Is there superconductivity in the square lattice Hubbard U>07?
At half-filling (as in the honeycomb) it 1s magnetic (not RVB)
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FIG. 3 (color). Inverse d-wave pair-field susceptibility as a
function of temperature for different cluster sizes at 10% doping.
The continuous lines represent fits to the function P, =
Aexp[2B/(T — T,)?>] for data with different values of z,.
Inset: magnified view of the low-temperature region.

From T. Maier et al. PRL 05 U/t=4 Cluster DMFT



A very controversial results (see e.g. our VMO).
Older paper by S. Zhang et al. PRL’97 by CPQMC

A, . =cyc, +c,c, destroys a singlet bond.
ODLRO 1t , for |i— jl— oo:
(P, | A" A

I,i+X JoJ+x(y)

i, ) =+(— d-wave)P; >0

1, ) is estimated by projection techniques:

Y, ) =exp(-Ht)y, ) for T — o
with constraned path approximation (CPQMC)
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FIG. 3. Long-range behavior of the d,:_,> pairing correlation
function versus distance for a 0.85 filled 16 X 16 lattice at
U = 2 and 4. This behavior is shown for the free-electron and
CPMC calculations. Also shown is the vertex contribution.

FIG. 2. Long-range behavior of the d,:_,2 pairing correlation
function versus distance for 0.85 filled 12 X 12 lattice at
U = 2,4, and 8. This behavior is shown for the free-electron
and CPMC calculations. Also shown is the vertex contribution.

Note the huge scale of the pairing !!!!



For a lattice model we use here the Gutzwiller wf

wRVB = exp(— gE lan) expzfu (cch”+c]Tcw) ‘O>
" Singlet bond

ABCS

x2_y2
-y

H,. = Egkc;,acka ABCS E(Cosk —cosk,)cpcly +h.c.
k,o

where f 1s determined by one parameter

and g, =—-2t(cosk, +cosk )—-u, 1e.f, =

2 2
£, +\/€k + A,

Use of Quantum Monte Carlo mandatory:
Gutzwiller approximation too poor in general,
¢.g. Mott transition 1n cubic lattices...etc.




Why we have to optimize J(=g) and AL 9

Hubbard Model: H =-t¢ EC’U io +UEn n,
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In mean field (BCS) no way to have BCS>0 for U>0
Theorem Lieb ‘90

Qualitative new features appear 1f J and BCS are
optimized toghether: RVB 1nsulator or supercond.



There are “’huge” finite size effects and
A%, ~0.01+0.001 for #Sites — oo

P’ ~ (Aff_sy2 )* ~10™* +10~° almost unmeasurable by QMC
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The pairing 1s almost unmeasurable for U<~5t

Gutzwiller wave function
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50 Sites (tilted square) 8 holes (big sign problem!)

Pairing correlations
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Converged computations can be done by sampling
Sign ~0.01 and by extrapolation (see later).



e.g. for the smallest U=0 pairing we start with

Several different trial functions with different A"
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We use that all wi’s for T — © converge
to the same value. Notice also non monotonic...



Test on an 18 sites where exact results known
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By extrapolating consistently up to tt=1 with 3wt’s



The right scale 1s different and caught by the GW
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In general the “’right” pairing are much smaller than U=0
but much flatter (see blue), showing short coherence.



Why much smaller?

Correlation (U) makes a strong renormalization of
the quasiparticle weight: ¢, =7, ¢, withZ, <<l
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%z> =exp(-Ht/ 2)‘7/}T> = Eai exp(-£,T/ 2)(¢i>

where a, =(y,|y,) and  H|y,)=E,|y,)
Ol Y aa, (y,|0|y; Yexpl—(E, + E;)T /2]
<1/JT %) 0 Ealz exp(—El.r)

~(%o|Olwo)+ X 6,0y, )exp(-A,) A, =IE,~E,|

By using two A and two *’b” for each O and vy
-> stable fits for estimating accurately <¢O ‘0‘¢0>



We have considered several closed shell fillings
Studying the evolution for U>0 of the pairing
correlation, the smallest one for U=0.

P, can be estimated by subtracting the ‘’small™
U 0 contribution (vertex correctlon)
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Superconductivity from strong correlation t-J model

+
P, =2 \/ | (o | AT, Ay w0
at the largest distance
0.18 . .
. Jit=04 ]
2:: 8x8 empty
gl T 242 full ‘
S 012} E?@\S -
o 010'_ @/ ]
' <%/Y/ g
0.08f -0 VMC \ | ;
- —O— FN+1LS &
0081 g ENs2LS 3
0.04 —v—0 varialnce | X
0.1 | 0.2 | 0.3 | 0.4
6 i] 0z
S. Sorella et al. PRL 02 wtntet g vt

P, 1s an order of magnitude larger than Hubbard!
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Conclusions
No spin liquid phase in the Honeycomb lattice.
No spin liquid without sign problem?

Gutwiller wavefunction predicts d-wave pairing
in the U>0 Hubbard model, but is indeed
very small for U~<4t (1f not zero at all).

By sampling the sign reasonably converged
/extrapolated ground state properties can be
obtained 1n closed shell #Sites ~100.

Good evidence of d-wave pairing, phase diagram
possible by assuming small size effects in vertex cor



