Recent results on the Hubbard model by quantum Monte Carlo & Petaflop computers

> Sandro Sorella SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer)

Vallico, Apuan Alps, 29 August 2012

Motivations

- → The Hubbard model has been a long standing model for too many years.
- → Experiments on optical lattices can solve fundamental questions about the model (soon?)
- → Quantum Monte Carlo can exploit massive parallelism in modern supercomputers, a factor ~10000 faster than 20 years ago.
 Sampling the <Sign> is the easiest task for parallelism, replicas and average!
 → More information (before optical lattices)?

Outline

From RVB insulator to High-Tc superconductivity with no electron-phonon coupling and repulsion (!)

<u>Quantum Monte Carlo and Petaflop supercomputer</u> a new possibility to understand electron correlation

The honeycomb lattice → no spin liquid phase (contrary to previous claims)

How to survive with the sign problem?

Recent results by massive sampling/extrapolation: Small but non vanishing effect \rightarrow Phase diagram?

Resonating valence bond (RVB)

In this theory the chemical valence bond is described as a singlet pair of electrons

$$\frac{1}{\sqrt{2}} \left(\uparrow \downarrow \rangle - \left| \downarrow \uparrow \rangle \right) \left[\Psi_a(r) \Psi_b(r') + a \Leftrightarrow b \right]$$

spin up and spin down electrons in a spin singlet state *a* and *b* are nuclear indexes

The true quantum state of a compound is a superposition or resonance of many valence bond states. The superposition usually improves the

variational energy of the state.

L. Pauling, Phys. Rev. 54, 899 (1938)

Linus Pauling

Example of RVB

Benzene

 C_6H_6

6 valence electrons in 6 sites (2p_z type)^{Tapyrew} State view two ways to arrange nearest neighbor bonds (Kekule' states)

<u>The rule</u>: two singlet bonds cannot overlap on the same Carbon atom otherwise two electrons feel a too large Coulomb repulsion.

Dewar valence bond (believed less important)

Graphene layers can be experimentally prepared

Definition of spin liquid

A spin state with

no magnetic order (classical trivial)

no Dimer state (Read,Sachdev)

is a spin liquid

Recent development of supercomputers is based on an increased number of cores/node. But in this trend the bandwidth of the node increases much slower and the ''delayed updates'' technique becomes more and more crucial. Essentially one tranforms matrix-updates (bandwidth limited) in matrix-matrix fast operations LxK_{rep}.

Recent exciting result on the Hubbard model... Muramatsu group, Nature 2010.

No broken symmetry but a full gap at U/t~4... this is an RVB phase... The auxiliary field technique based on the Hubbard-Stratonovich (Hirsch) transformation provides a big reduction of the sign problem as: The discrete HST (Hirsch '85):

$$\exp[g(n_{\uparrow} - n_{\downarrow})^{2}] = \frac{1}{2} \sum_{\sigma=\pm 1} \exp[\lambda \sigma (n_{\uparrow} - n_{\downarrow})]$$
$$\cosh(\lambda) = \exp(g/2)$$

With this transformation the true propagator is a superposition of 'easy' one-body propagators: $|\psi_{\tau}\rangle = \exp(-H\tau)|\psi_{T}\rangle = \sum_{\{\sigma\}} U_{\sigma}(\tau,0)|\psi_{T}\rangle$

and, if $|\psi_T\rangle$ is a Slater determinant, $U_{\sigma}(\tau,0)|\psi_T\rangle$ can be evaluated.

We can compute any correlation function O with standard MC with weight: $W[\sigma] = \langle \psi_T | U_\sigma (\tau, 0) | \psi_T \rangle$:

$$\left\langle \psi_{0} \left| O \right| \psi_{0} \right\rangle = \frac{\left\langle \psi_{\tau/2} \left| O \right| \psi_{\tau/2} \right\rangle}{\left\langle \psi_{\tau} \left| \psi_{T} \right\rangle \right\rangle} = \frac{\sum_{\{\sigma\}} W[\sigma] O[\sigma]}{\sum_{\{\sigma\}} W[\sigma]}$$

$$O[\sigma] = \frac{\left\langle \psi_{T} \left| U_{\sigma}(\tau, \frac{\tau}{2}) O U_{\sigma}(\frac{\tau}{2}, 0) \right| \psi_{T} \right\rangle}{\left\langle \psi_{T} \left| U_{\sigma}(\tau, 0) \right| \psi_{T} \right\rangle}$$

Finite size scaling up to 2592 sites (previous 648)!

The charge-charge correlation should decay as $1/r^4$ in the semimetal, as opposed to exponential in the insulator, thus by plotting $L^4\rho(L_{max})$

We clearly see a charge transition at U/t~3.75(5) consistent with the magnetic one \rightarrow no spin liquid):

First results on a model without sign problem:

Much larger size \rightarrow no spin liquid in a model with no frustration.

As a consequence of the Murphy's law "No interesting results can be obtained with a fermionic model without sign problem...." but this is under debate. There are exceptions, but have to be also tested on much larger sizes and lower temperatures.

Cuprates

From RVB to superconductivity

 $[N(\# \text{particles}), \theta(\text{phase coherence})] = -i$

The presence of holes (empty sites) allows charge (super-) current and <u>superconductivity</u>

RVB \rightarrow the actual order parameter ~ x (doping)

This is the most important feature of an RVB superconductor Is there superconductivity in the square lattice Hubbard U>0? At half-filling (as in the honeycomb) it is magnetic (not RVB)

FIG. 3 (color). Inverse *d*-wave pair-field susceptibility as a function of temperature for different cluster sizes at 10% doping. The continuous lines represent fits to the function $P_d = A \exp[2B/(T - T_c)^{0.5}]$ for data with different values of z_d . Inset: magnified view of the low-temperature region.

From T. Maier et al. PRL '05 U/t=4 Cluster DMFT

A very controversial results (see e.g. our VMC). Older paper by S. Zhang et al. PRL'97 by CPQMC

 $\Delta_{i,j} = c_{i\uparrow}c_{i\downarrow} + c_{j\uparrow}c_{i\downarrow} \quad \text{destroys a singlet bond.}$ ODLRO if , for $|i - j| \rightarrow \infty$: $\langle \psi_0 | \Delta_{i,i+x}^+ \Delta_{j,j+x(y)} | \psi_0 \rangle = +(-\text{d-wave})P_d^2 > 0$

 $|\psi_0\rangle$ is estimated by projection techniques: $|\psi_0\rangle = \exp(-H\tau)|\psi_T\rangle$ for $\tau \to \infty$ with constraned path approximation (CPQMC)

FIG. 2. Long-range behavior of the $d_{x^2-y^2}$ pairing correlation function versus distance for 0.85 filled 12×12 lattice at U = 2, 4, and 8. This behavior is shown for the free-electron and CPMC calculations. Also shown is the vertex contribution.

FIG. 3. Long-range behavior of the $d_{x^2-y^2}$ pairing correlation function versus distance for a 0.85 filled 16 × 16 lattice at U = 2 and 4. This behavior is shown for the free-electron and CPMC calculations. Also shown is the vertex contribution.

Note the huge scale of the pairing !!!!

For a lattice model we use here the Gutzwiller wf

$$\Psi_{RVB} = \exp(-g\sum_{i} n_{i\uparrow}n_{i\downarrow}) \exp\sum_{i,j} f_{i,j} \underbrace{(c_{i,\uparrow}^+ c_{j,\downarrow}^+ + c_{j,\uparrow}^+ c_{i,\downarrow}^+)}_{\text{Singlet bond}} |0\rangle$$

where *f* is determined by one parameter $\Delta_{x^2-y^2}^{BCS}$

$$H_{BCS} = \sum_{k,\sigma} \varepsilon_k c_{k,\sigma}^+ c_{k,\sigma} + \Delta_{x^2 - y^2}^{BCS} \sum_k (\cos k_x - \cos k_y) c_{k\uparrow}^+ c_{-k\downarrow}^+ + h.c.$$

and $\varepsilon_k = -2t(\cos k_x + \cos k_y) - \mu$, i.e. $f_k = \frac{\Delta_k}{\varepsilon_k} + \sqrt{\varepsilon_k^2 + \Delta_k^2}$

Use of Quantum Monte Carlo mandatory: Gutzwiller approximation too poor in general, e.g. Mott transition in cubic lattices...etc.

In mean field (BCS) no way to have BCS>0 for U>0 Theorem Lieb '90

Qualitative **new** features appear if J and BCS are optimized toghether: RVB insulator or supercond.

There are ''huge" finite size effects and $\Delta_{x^2-y^2}^{BCS} \sim 0.01 \div 0.001$ for #Sites $\rightarrow \infty$ $P_d^2 \sim (\Delta_{x^2-y^2}^{BCS})^2 \sim 10^{-4} \div 10^{-6}$ almost unmeasurable by QMC

The pairing is almost unmeasurable for U<~5t

50 Sites (tilted square) 8 holes (big sign problem!)

Converged computations can be done by sampling Sign ~0.01 and by extrapolation (see later).

e.g. for the smallest U=0 pairing we start with Several different trial functions with different $\Delta_{x^2-v^2}^{BCS}$

We use that all wf's for $\tau \rightarrow \infty$ converge to the same value. Notice also non monotonic...

Test on an 18 sites where exact results known

By extrapolating consistently up to $\tau t=1$ with 3wf's

The right scale is different and caught by the GW

In general the 'right' pairing are much smaller than U=0 but much flatter (see blue), showing short coherence.

Why much smaller?

Correlation (U) makes a strong renormalization of the quasiparticle weight: $c_{k_F}^+ \rightarrow Z_{k_F} \tilde{c}_{k_F}^+$ with $Z_{k_F} <<1$

$$|\psi_{\tau/2}\rangle = \exp(-H\tau/2)|\psi_T\rangle = \sum_i a_i \exp(-E_i\tau/2)|\psi_i\rangle$$

where $a_i = \langle \psi_T | \psi_i \rangle$ and $H | \psi_i \rangle = E_i | \psi_i \rangle$
$$\frac{\langle \psi_{\tau/2} | O | \psi_{\tau/2} \rangle}{\langle \psi_\tau | \psi_T \rangle} = \frac{\sum_{i,j} a_i a_j \langle \psi_i | O | \psi_j \rangle \exp[-(E_i + E_j)\tau/2]}{\sum_i a_i^2 \exp(-E_i\tau)}$$

$$\sim \langle \psi_0 | O | \psi_0 \rangle + \sum_i b_i (O, \psi_T) \exp(-\Delta_i) \qquad \Delta_i = |E_i - E_0|$$

By using two Δ and two "b" for each O and ψ_T \Rightarrow stable fits for estimating accurately $\langle \psi_0 | O | \psi_0 \rangle$ We have considered several closed shell fillings Studying the evolution for U>0 of the pairing correlation, the smallest one for U=0.

P_d can be estimated by subtracting the 'small" U=0 contribution (vertex correction).

Superconductivity from strong correlation t-J model

$$\mathbf{P}_{\mathrm{d}} = 2 \sqrt{\left| \left\langle \psi_{\mathrm{0}} \middle| \Delta_{i,j}^{+} \Delta_{k,l} \middle| \psi_{\mathrm{0}} \right\rangle \right|}$$

at the largest distance

P_d is an order of magnitude larger than Hubbard!

Conclusions

- No spin liquid phase in the Honeycomb lattice. No spin liquid without sign problem?
 - Gutwiller wavefunction predicts d-wave pairing in the U>0 Hubbard model, but is indeed very small for U~<4t (if not zero at all).
 - By sampling the sign reasonably converged /extrapolated ground state properties can be obtained in closed shell #Sites ~100.
- Good evidence of d-wave pairing, phase diagram possible by assuming small size effects in vertex cor