A Full Configuration Interaction QMC Perspective on the Homogeneous Electron Gas

James Shepherd

Quantum Monte Carlo in the Apuan Alps 31st July 2012

- A real challenge for FCI(QMC)
- ...a new method in fully-periodic calculations
- Model systems can give physical insight without added complexity of real systems
- ...an application with development in mind
- Exact (finite/complete basis) energy benchmarks
- What does the wavefunction look like?

70 years of history...

- 1934 Wigner crystal
- 1956 Landau theory of Fermi liquids
- 1957 Gell-Mann & Brueckner RPA
- 1962 Overhauser spin/charge density waves
- 1980 Ceperley-Alder QMC

...and so much more.

DMC: very successful

Phase transitions, spectral functions, effective mass, QP renomalization factor

(Ceperley, Needs, Holzmann, Drummond, Foulkes, Ballone, Gurturbay etc. etc.)

Post-HF quantum chemistry: new studies of the solid state (e.g. LiH)

(Schutz, Manby, Kresse, Stoll, Fulde etc. etc.)

Open question: what does $|\Psi\rangle = \sum_{i} c_{i} |D_{i}\rangle$ look like?

(I am discussing 3D but will show 2D schematics)

heirarchy N-electron models

The problem with determinantal expansions...

... simulation-cell HEG has large amounts of dynamic correlation at real metal r_s -values

figure due to George Booth

Perturbative approaches (MP2, CCD(T)) diverge...

CID goes to zero (C.E./elec)...

RPA/CCD(T) due to Andreas Grueneis, VASP

FCIQMC

$$|\Psi\rangle = \sum_{i} c_{i} |D_{i}\rangle + \qquad \Psi_{0} = \lim_{\tau \to \infty} e^{-\tau(\hat{H} - S)}\Psi_{\tau=0}$$

$$\downarrow$$

$$-\frac{dc_{i}}{d\tau} = (H_{ii} - S)c_{i} + \sum_{j \neq i} H_{ij}c_{j}$$

FCIQMC: GH Booth, AJW Thom, A Alavi, JCP 131 5, 054106 (2009)

FCIQMC

Walker population

Spawning

Death/cloning

Instantaneous
$$\Psi(au), H_{ij}(au)$$

FCIQMC: GH Booth, AJW Thom, A Alavi, JCP 131 5, 054106 (2009)

Initiator FCIQMC (*i*-FCIQMC)

Coupling of
$$\Psi(\tau), H_{ij}(\tau)$$

Only consider H_{ij} over those determinants with a certain population

$$-\frac{dc_{\mathbf{i}}}{d\tau} = (H_{\mathbf{i}\mathbf{i}} - S)c_{\mathbf{i}} + \sum_{\mathbf{j}\neq\mathbf{i}}H_{\mathbf{i}\mathbf{j}}c_{\mathbf{j}}$$

Stabilises S over a much larger range of walker populations

 $N_{_{\scriptscriptstyle W}} \rightarrow \infty$ limit must be found

i-FCIQMC: D Cleland, GH Booth, A Alavi, JCP 132 4, 041103 (2010)

Initiator FCIQMC (*i*-FCIQMC)

 $N_{w} \rightarrow \infty$ limit must be found

i-FCIQMC/HEG/extrap/initiator error: JJS, GH Booth, A. Alavi, JCP, 136, 244101 (2012)

Overview

- Introduction
- Plane wave basis set incompleteness error
- Comparison with DMC and finite size effects
- Insights from the FCIQMC wavefunction

Plane wave basis sets

i-FCIQMC/HEG: JJS, GH Booth, A Gruneis, A Alavi, PRB, 85, 081103(R) (2012)

Spin-polarization/dimension dependent... e.g. ID spin-polarized, 1/M³

due to Jennifer Mohr

i-FCIQMC/HEG: JJS, GH Booth, A Gruneis, A Alavi, PRB, 85, 081103(R) (2012)

$$E_{corr} = \sum_{j \in \{doubles\}} \langle D_j | H | D_0 \rangle \frac{C_j}{C_0}$$

$$E_{corr} = \sum_{ij}^{occ} \sum_{ab}^{virt} \delta_{\mathbf{k}_i - \mathbf{k}_a, \mathbf{k}_j - \mathbf{k}_b} \left(v_{\mathbf{k}_i - \mathbf{k}_a} - v_{\mathbf{k}_j - \mathbf{k}_a} \right) \frac{C_{\mathbf{k}_i \mathbf{k}_j}}{C_0}$$
Pairwise addition of virtual contributions

Consider a different definition of basis set

- It is possible to define two momentum transfer vectors for an excitation.
- Show there are three sensible choices for basis sets based on this.
- Originates from basis set convergence work in solid state systems.

Consider a different definition of basis set

Consider a different definition of basis set

$$\sum_{ab}^{k_c} F(k) \longrightarrow \sum_{ab}^{g_c} F(g)$$

HEG/extrapolation: JJS, A Gruneis, GH Booth, G Kresse, A Alavi, PRB, 86, 035111 (2012).

HEG/extrapolation: JJS, A Gruneis, GH Booth, G Kresse, A Alavi, PRB, 86, 035111 (2012).

For multi-reference calculations, there is a trade-off...

r_s	М	k extrapolation	g extrapolation
0.5	1850	-0.5969(3)	-0.5959(7)
1.0	1850	-0.5325(4)	-0.5316(4)
2.0	1850	-0.4447(4)	-0.444(1)
5.0	778	-0.306(1)	-0.307(1)

For multi-reference calculations, there is a trade-off...

$$E_{corr} = \sum_{ij}^{occ} \sum_{ab}^{virt} \delta_{\mathbf{k}_i - \mathbf{k}_a, \mathbf{k}_j - \mathbf{k}_b} \left(v_{\mathbf{k}_i - \mathbf{k}_a} - v_{\mathbf{k}_j - \mathbf{k}_a} \right) \frac{c_{\mathbf{k}_i \mathbf{k}_j}^{\mathbf{k}_a \mathbf{k}_b}}{c_0}$$

Single (multi-reference)
calculation
$$\sum_{ab}^{g_c} F(g)$$

- Immediate CBS estimate
- Systematically improvable

Overview

- Introduction
- Plane wave basis set incompleteness error
- Comparison with DMC and finite size effects
- Insights from the FCIQMC wavefunction

How good are the HF nodes?

- Single-determinant Slater-Jastrow wavefunction
- Real-space propagation using a Green's function propagator
- Makes the Schrödinger equation diffusive
- Must enforce anti-symmetry explicitly:

$$f(\mathbf{x},\tau) = \Psi(\mathbf{x},\tau)\phi_{T}(\mathbf{x})$$

 How good are the trial wavefunction's nodes? (infer from energy) *i*-FCIQMC, exact except for:

- Basis set incompleteness error
- Initiator error

DMC, exact except for:

- Fixed-node error (after backflow)
- (Time-step error)

CASINO: RJ Needs, MD Towler, ND Drummond and P Lopez Rios, J. Phys.: Condensed Matter 22, 023201 (2010). Backflow: P. Lopez Rios, A. Ma, ND Drummond, MD Towler and RJ Needs, Phys. Rev. E 74, 066701

(2006)

Consistent with:

K.M. Rasch, L. Mitas, Chem. Phys. Lett. 528, 59 (2012)

Y Kwon, D. M. Ceperley and R. M. Martin, Phys. Rev. B 58, 6800 (1998).

The correlation energy undulates with changing N...

*Non-zero twist angle

...but so does the gap.

Simulation cell HEG systems can resemble clusters of electrons in k-space more than the continuum picture of a sphere

C Lin, F-H Zong, D M Ceperley, Phys Rev E 64, 016702 (2001) N Drummond, R Needs, A Sorouri, W Foulkes, Phys Rev B, 78, 125106 (2008)

These now have different correlation energies...

(HF changes regardless)

54 electron system

Twist-averaging yields a smooth pattern with N...

With an underlying relationship

Using this relationship...

Ratios are hopefully fairly constant with N, so return to 14 electrons...

How well does DMC do in retrieving the missing correlation energy in VMC?

Overview

- Introduction
- Plane wave basis set incompleteness error
- Comparison with DMC and finite size effects
- Insights from the FCIQMC wavefunction

What about the wavefunction?

i-FCIQMC directly simulates a representation of the wavefunction (walkers)

- Is the wavefunction recognisably multi-reference?
- What are the most important excitations?
- How does this compare with molecules?
- ... or other theories?

(Speculative/preliminary)

A remarkably simple 'sign structure'?

How does this relate to molecules?

How does this relate to molecules?

 $m N_{pop}$

Acknowledgements

Ali Alavi, George Booth (NECI, Cambridge) Georg Kresse, Andreas Grueneis (VASP, Vienna) Richard Needs, Pablo López-Ríos (CASINO, TCM Cambridge) James Spencer, Alex Thom (discussions) Alavi Group Cambridge, esp: Jennifer Mohr (1D/2D HEG) Robert Thomas (N₂ RHF/UHF results) Catherine Overy (discussions)

Special thanks to 'Quantum Monte Carlo and the CASINO program IV' 2009 mentors

References

- FCIQMC: GH Booth, AJW Thom, A Alavi, JCP, 131, 5, 054106 (2009)
- i-FCIQMC: D Cleland, GH Booth, A Alavi, JCP, 132, 4, 041103 (2010)
- i-FCIQMC/HEG: JJS, GH Booth, A Gruneis, A Alavi, PRB, 85, 081103(R) (2012)
- i-FCIQMC/HEG/extrap/initiator error: JJS, GH Booth, A. Alavi, JCP, 136, 244101 (2012)
- HEG/extrapolation: JJS, A. Gruneis, GH Booth, G Kresse, A Alavi, PRB, 86, 035111 (2012)
- HEG/cusps: A Gruneis et al. in preparation
- HEG/diverences: JJS et al. in preparation