Phase diagram of the symmetric electron-hole bilayer

R. Maezono, <u>P. López Ríos</u>, Tetsuo Ogawa, and R.J. Needs In preparation

TCM group, Cavendish Laboratory, University of Cambridge.

・ロン ・回 と ・ ヨン ・ ヨン

 The electron-hole bilayer
 The system

 Results
 Previous studies

 Summary
 A different approach

The model system

• Experimental setup: double-well heterojunction + electric field

- Model defined by:
 - two parallel infinite layers of infinitesimal width
 - separation d
 - in-layer density parameter r_s
 - electron-hole mass ratio $m_h/m_e = 1$

A B > 4
 B > 4
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

A 3 3

The system Previous studies A different approach

Expected phases

- $d \gg r_s$: recovers the 2D HEG phase diagram (fluid at low r_s , Wigner crystal at high r_s)
- $d \lesssim r_s$: exciton formation
- $d \lesssim 0.38$ a.u.: biexciton formation possible ¹

(NB, we ignore the Wigner crystal phase at this stage of the study, and concentrate on $r_s \leq 10$)

¹R. M. Lee, N. D. Drummond, and R. J. Needs, Phys. Rev. B **79**, 125308 (2009). → < => <=> <=> > = → へ <

The electron-hole bilayer Results Summary A different approach

De Palo et al. (2002)

Phase determined comparing energies obtained with different wave functions, each representing a phase $^{\rm 2}$

The system Previous studies A different approach

A single wave function

Form of Ψ_S

$$\Psi_{\rm S} = \det \left[\phi(\mathbf{e}_i^{\uparrow} - \mathbf{h}_j^{\downarrow}) \right] \det \left[\phi(\mathbf{e}_i^{\downarrow} - \mathbf{h}_j^{\uparrow}) \right]$$

- Describes pure fluid phase when $n_{\rm PW} = N$, $p_l \neq 0$ and $c_m = 0$
- Describes pure excitonic phase when $p_l = 0$
- Phase determined by computing e-h condensate fraction (from two-body density matrix) and pair-correlation functions

The system Previous studies A different approach

Why use a single wave function?

- Associating phases and wave functions involves either:
 - limiting the flexibility of the wave function, or
 - risking obtaining a wrong result

(the "magic backflow" argument)

- Describes region near boundary
- Single calculation per point in (r_s, d)

(ロ) (同) (E) (E) (E)

The electron-hole bilayer Results Summary A different approach

 $d \rightarrow 0$ and the e-h Kato cusp condition

- At d = 0 we impose e-h Kato cusp condition $(\Gamma_{eh} = -1)$
- At d > 0 we impose e-h cusplessness $(\Gamma_{eh} = 0)$
- Not a smooth change! Hard to study $d \rightarrow 0$

The quasi-cusp Jastrow term (d > 0)

$$Q(r) = \Gamma_{eh} \left[\sqrt{r^2 + z^2} - \sqrt{L^2 + z^2} \right] g(r/L)$$
$$g(x) = 1 - 6x^2 + 8x^3 - 3x^4$$

(Plane-cone intersection, if you're wondering)

・ロト ・回ト ・ヨト ・ヨト

The expected results... ...and a surprise

Behaviour of the energy

- Behaviour at $r_s = 1$ is correct, uninteresting, also in HEG
- Four odd-looking points are human error (now corrected)

イロト イヨト イヨト イヨト

The expected results... ...and a surprise

Behaviour of the condensate fraction

Ryo's e-h bilayer calculations

• What's with the condensate fraction at d = 0?

・ロン ・回 と ・ ヨン ・ ヨン

æ

The expected results... ...and a surprise

Pair-correlation function in the excitonic phase

Pablo López Ríos The symmetric electron-hole bilayer

・ロト ・回ト ・ヨト ・ヨト

The expected results... ...and a surprise

Pair-correlation function in the "problematic" region

- Jastrow factor is likely responsible for biexciton description
- Phase onset at $d \sim 0.2$, consistent with Lee et al. ³

³R. M. Lee, N. D. Drummond, and R. J. Needs, Phys. Rev. B **79**, 125308 (2009). → < = > < = > = → へ へ へ

Summary

- More robust scheme than associating wave functions to phases
- Excellent results, unsought appearence of biexcitonic phase
- In progress:
 - Pretty plots
 - Investigation of finite size effects
- Future work:
 - Include Wigner crystal: geminal-type wave function (thanks Pascal!), static structure factor detects phase
 - More experimentally-relevant mass ratios
 - Similar scheme for HEG?

・ロン ・回 と ・ ヨ と ・ ヨ と

End

Pablo López Ríos The symmetric electron-hole bilayer

End

Pablo López Ríos The symmetric electron-hole bilayer