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The Full Configuration Interaction Method

Expand the wave function in a basis of Slater determinants

|Ψ〉 =
∑

i

ci|Di〉

The coefficients ci that minimise

E({ci}) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

satisfy the matrix eigevalue problem

Hi jcj = EFCI
0 ci

where Hi j = 〈Di|Ĥ|Dj〉.



The FCIQMC Algorithm

The lowest eigenvector of the full-CI matrix eigenproblem

Hi jcj = EFCI
0 ci

can be obtained by solving the imaginary-time Schrödinger
equation

∂ci(t)
∂t

= −
(
Hij − Sδij

)
cj(t) = Tij cj(t)



Sampling Algorithm

∂ci(t)
∂t

== Tij cj(t)

Imagine a population of signed “psips” scattered through
the configuration space.
In one time step, a psip on Dj may spawn children on any
configuration Di for which Tij is non-zero.
The expected number of children spawned on Di is |Tij∆t |.

If Tij > 0, the children have the same sign as their parent.
If Tij < 0, they have the opposite sign.

Then

〈qi〉n+1 = 〈qi〉n + (Ti j∆t)〈qj〉n



Sampling Algorithm (cont.)

〈qi〉n+1 = 〈qi〉n + (Ti j∆t)〈qj〉n

This is a first-order finite-difference approximation to the
imaginary-time Schrödinger equation

∂ci(t)
∂t

= Tij cj(t)

The FCIQMC psip dynamics solves the
imaginary-time Schrödinger equation.



Psip Cancellation

As with all fermion QMC methods, there is a sign problem.
Psips of both signs appear on the same configurations
and the positive and negative populations almost cancel.

To help control this problem, positive and negative psips on
the same determinant at the same time are cancelled out.
Similar psip cancellation algorithms have been tried many
times in continuum DMC. They do not work very well.
The surprise in Alavi’s work is that, for FCI spaces, psip
cancellation works much better.
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2D 18-site Hubbard model at half filling, U = 4t .
(Spencer, Blunt, and Foulkes, J. Chem. Phys. 136, 054110 (2012))
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DMQMC

The density operator ρ̂(β) = exp[−β(Ĥ − SÎ )] satisfies
the Bloch equation

∂ρ̂

∂β
= −(Ĥ − SÎ )ρ̂ = T̂ ρ̂

∂ρij

∂β
= Tik ρkj

This looks rather like the imaginary-time Schrödinger
equation.

∂ci

∂β
= Tij cj
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Idea
Can we solve the Bloch equation using an FCIQMC-like
technique that works in the space of operators/matrices
instead of in the space of states/vectors?



Sampling Algorithm

∂ρij

∂β
= Tikρkj

Imagine a population of two-index psips scattered through
the configuration space of operators |k〉〈j|.
In one time step, a psip on |k〉〈j| may spawn children on
any operator |i〉〈j| for which Tik is non-zero.
The expected number of children spawned on |i〉〈j| is
|Tik∆t |.

If Tik > 0, the children have the same sign as their parent.
If Tik < 0, they have the opposite sign.

Psips of opposite sign on the same operator cancel.



Sampling Algorithm (cont.)

∂ρij

∂β
= Tikρkj

Psips spawn along columns of the density matrix only.
However, since [ρ̂, Ĥ] = 0, we can equally well solve the
symmetrized Bloch equation

∂ρij

∂β
=

1
2
(
Tikρkj + ρikTkj

)
Now psips spawn along row and columns.
ρkj(β = 0) = δkj, so psips are initially scattered at random
along the diagonal of the density matrix.



FCIQMC and DMQMC Compared

The DMQMC equation of motion

∂ρij

∂t
=

1
2
(
Tikρkj + ρilTlj

)
can be rewritten in the form

∂ρij

∂t
= Lij,klρkl

where Lij,kl = Tikδjl + Tljδik.

FCIQMC finds the large eigenvalue of the matrix Tij.
DMQMC finds the largest eigenvalue of the matrix Lij,kl,
with ij and kl regarded as composite indices.



Advantages of DMQMC

Finite-temperature properties accessible.
Expectation values of operators that do not commute with
Ĥ easily obtainable:

〈Ô〉 =
Oijρji

ρkk



Disadvantages of DMQMC

Problem 1
The dimension of the space of operators is the square of the
dimension of the space of states.

But . . .
The number of determinants in the FCI space rises
exponentially with the number of particles/sites n, and

ND ∝ eαn ⇒ N2
D ∝ (eαn)

2
= eα(2n)

FCIQMC for an n-site Hubbard model ∼ DMQMC for an
n/2-site Hubbard model. Not so bad.



Problem 2
The simulation goes straight past every inverse temperature β:
you cannot stop to accumulate statistics. Necessary to run
many β-loops and average.

But . . .
Every β-loop provides data at all inverse temperatures
from β = 0 (T =∞) to β large (T → 0).
Independence of β-loops makes statistical analysis easy.
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The 2D Heisenberg Model

Antiferromagnetic Heisenberg Hamiltonian (J > 0)

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj = J
∑
〈ij〉

[
ŜizŜjz +

1
2

(Ŝ+
i Ŝ−j + Ŝ−i Ŝ+

j )

]

2D square lattice is bipartite: no sign problem; no
annihilation.
Ground state and our simulations have Ms = 0.
For 4× 4 lattice, Ms = 0 Hilbert space has dimension
NC = 16C8 = 12870. Direct diagonalisation possible.
For 6× 6 lattice, NC = 9.08× 109.
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〈Ĥ〉 (cont.)
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Staggered Magnetization

〈M̂ 2〉, where M̂ = 1
N
∑

i(−1)xi+yi Ŝi
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Exact ground state = 0.276527
DMQMC result

4× 4; 105 psips; 103 β-loops.



Heat Capacity

Ch = −β2d〈Ĥ〉/dβ = β2(〈Ĥ 2〉 − 〈Ĥ〉2)
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Larger Systems

4× 4: NC = 12870 6× 6: NC = 9.08× 109
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Greens function MC ground state
DMQMC result

6× 6; 105 psips; 5× 103 β-loops.



Psip Spreading
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Psip Spreading (cont.)

As β increases, psips appear further and further from the
diagonal of the density matrix.
Evaluating

〈Ô〉 =
Oijρji

ρkk

becomes more and more difficult.
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Importance Sampling: Nick’s Approach

Idea
Suppress psip population on density matrix elements ρij with
d(i, j) large.

Multiply spawning rate from operators of excitation level d
to operators of excitation level d ′ by wd ′,d . Multiply reverse
spawning rate by wd ,d ′ = 1/wd ′,d .

If d ′ > d , wd ′,d < 1:
suppress spawning to operators further from the diagonal
enhance spawning to operators closer to the diagonal



Importance Sampling: Link to Standard Approach

The psips now sample the modified density matrix

ρ̃ij = wd ,d−1wd−1,d−2 . . .w1,0ρij = ρT
ij ρij

where d = d(i, j) = d(j, i).

If ρ satisfies
∂ρij

∂β
= Lij,kl ρkl

then

∂(ρT
ij ρij)

dβ
=

(
ρT

ij Lij,kl
1
ρT

kl

)
ρT

kl ρkl



Importance Sampling: Link to Standard Approach

The psips now sample the modified density matrix

ρ̃ij = wd ,d−1wd−1,d−2 . . .w1,0ρij = ρT
ij ρij

where d = d(i, j) = d(j, i).

If ρ satisfies
∂ρij

∂β
= Lij,kl ρkl

then

d ρ̃ij

dβ
=

(
ρT

ij Lij,kl
1
ρT

kl

)
ρ̃kl
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Importance-Sampled Results

The weights are chosen to make the numbers of psips on
each excitation level similar as β →∞.
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It is convenient to switch the weights on gradually as the
simulation progresses (i.e., ρT is β-dependent).



6× 6 Heisenberg Model: Energy
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Greens function MC ground state = -0.678871
DMQMC result

6× 6; 104 psips; 103 β-loops.
(note slight error)
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Greens function MC ground state = -0.678871
DMQMC result

6× 6; 106 psips; 10 β-loops.
(error removed)



6× 6 Heisenberg Model: Staggered Magnetization
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Greens function MC ground state = 0.2099
DMQMC result

6× 6; 106 psips; 10 β-loops.



Larger Systems

Successfully studied an 8× 8 Heisenberg model

Ms = 0 Hilbert space dimension > 1019

Density matrix has > 1038 elements

using the same psip population (106) and only 10–100 times
more β-loops!



Summary

Achievement

Importance-sampled DMQMC works surprisingly well.
Can be applied to large sign-problem-free systems.
Yields full thermodynamics at all temperatures at once.
Yields full density matrix and hence arbitrary expectation
values.

Not bad for two undergraduate students!
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Outlook

Open Questions
Substantial population control errors in large systems need
investigating.
Severity of sign problem? Analogue of initiator approach?

Where is it useful?
The thermal properties of tiny molecules are not very
interesting.
When there is a sign problem, we may not be able to tackle
large enough systems to study phase diagrams.
Entanglement measures such as Tr(ρred ln ρred) and the
concurrence depend on reduced density matrices.
DMQMC seems able to calculate these better than other
methods.
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