Density Matrix Quantum Monte Carlo

N.S. Blunt¹ T.W. Rogers¹ J.S. Spencer^{1,2} W.M.C. Foulkes¹

¹Department of Physics Imperial College London

²Department of Materials Imperial College London

Quantum Monte Carlo in the Apuan Alps VII 30th July 2012

Outline

- Initial Results
- Importance Sampling
- 5 Importance-Sampled Results

Outline

- Initial Results
- Importance Sampling
- Importance-Sampled Results

The Full Configuration Interaction Method

Expand the wave function in a basis of Slater determinants

$$|\Psi
angle = \sum_{i} c_{i} |D_{i}
angle$$

• The coefficients c_i that minimise

$${m E}(\{m c_{m i}\}) = rac{\langle \Psi | \hat{H} | \Psi
angle}{\langle \Psi | \Psi
angle}$$

satisfy the matrix eigevalue problem

$$H_{ij}c_j = E_0^{\mathsf{FCI}}c_i$$

where $H_{ij} = \langle D_i | \hat{H} | D_j \rangle$.

The lowest eigenvector of the full-CI matrix eigenproblem

$$H_{ij}c_j = E_0^{\mathsf{FCI}}c_i$$

can be obtained by solving the imaginary-time Schrödinger equation

$$\frac{\partial c_{i}(t)}{\partial t} = -\left(H_{ij} - S\delta_{ij}\right)c_{j}(t) = T_{ij}c_{j}(t)$$

Sampling Algorithm

$$\frac{\partial \boldsymbol{c_{i}(t)}}{\partial t} == T_{ij} \, \boldsymbol{c_{j}(t)}$$

- Imagine a population of signed "psips" scattered through the configuration space.
- In one time step, a psip on D_i may spawn children on any configuration D_i for which T_{ij} is non-zero.
- The *expected* number of children spawned on D_i is $|T_{ij}\Delta t|$.
 - If $T_{ij} > 0$, the children have the same sign as their parent.
 - If $T_{ij} < 0$, they have the opposite sign.

Then

$$\langle q_i \rangle_{n+1} = \langle q_i \rangle_n + (T_{ij} \Delta t) \langle q_j \rangle_n$$

Sampling Algorithm (cont.)

$$\langle q_i \rangle_{n+1} = \langle q_i \rangle_n + (T_{ij} \Delta t) \langle q_j \rangle_n$$

This is a first-order finite-difference approximation to the imaginary-time Schrödinger equation

$$\frac{\partial c_{i}(t)}{\partial t} = T_{ij} c_{j}(t)$$

The FCIQMC psip dynamics solves the imaginary-time Schrödinger equation.

As with all fermion QMC methods, there is a sign problem. Psips of both signs appear on the same configurations and the positive and negative populations almost cancel.

- To help control this problem, positive and negative psips on the same determinant at the same time are cancelled out.
- Similar psip cancellation algorithms have been tried many times in continuum DMC. They do not work very well.
- The surprise in Alavi's work is that, for FCI spaces, psip cancellation works **much better**.

2D 18-site Hubbard model at half filling, U = 4t. (Spencer, Blunt, and Foulkes, J. Chem. Phys. **136**, 054110 (2012))

Outline

- Initial Results
- Importance Sampling
- Importance-Sampled Results

DMQMC

• The density operator $\hat{\rho}(\beta) = \exp[-\beta(\hat{H} - S\hat{I})]$ satisfies the Bloch equation

$$rac{\partial \hat{
ho}}{\partial eta} = -(\hat{H} - S\hat{I})\hat{
ho} = \hat{T}\hat{
ho}$$

DMQMC

• The density operator $\hat{\rho}(\beta) = \exp[-\beta(\hat{H} - S\hat{I})]$ satisfies the Bloch equation

$$\frac{\partial \hat{\rho}}{\partial \beta} = -(\hat{H} - S\hat{I})\hat{\rho} = \hat{T}\hat{\rho}$$
$$\frac{\partial \rho_{ij}}{\partial \beta} = T_{ik} \rho_{kj}$$

DMQMC

• The density operator $\hat{\rho}(\beta) = \exp[-\beta(\hat{H} - S\hat{I})]$ satisfies the Bloch equation

$$\begin{array}{ll} \displaystyle \frac{\partial \hat{\rho}}{\partial \beta} &=& -(\hat{H} - \boldsymbol{S} \hat{I}) \hat{\rho} \;=\; \hat{T} \hat{\rho} \\ \\ \displaystyle \frac{\partial \rho_{\boldsymbol{ij}}}{\partial \beta} &=& \boldsymbol{T}_{\boldsymbol{ik}} \, \rho_{\boldsymbol{kj}} \end{array}$$

 This looks rather like the imaginary-time Schrödinger equation.

$$rac{\partial m{c_i}}{\partial eta} = m{T_{ij}}\,m{c_j}$$

Idea

Can we solve the Bloch equation using an FCIQMC-like technique that works in the space of operators/matrices instead of in the space of states/vectors?

Sampling Algorithm

$$\frac{\partial \rho_{ij}}{\partial \beta} = T_{ik} \rho_{kj}$$

- Imagine a population of *two-index* psips scattered through the configuration space of *operators* |k \ (j).
- In one time step, a psip on |k⟩⟨j| may spawn children on any operator |i⟩⟨j| for which T_{ik} is non-zero.
- The expected number of children spawned on $|i\rangle\langle j|$ is $|T_{ik}\Delta t|$.
 - If $T_{ik} > 0$, the children have the same sign as their parent.
 - If $T_{ik} < 0$, they have the opposite sign.
- Psips of opposite sign on the same operator cancel.

Sampling Algorithm (cont.)

$$\frac{\partial \rho_{ij}}{\partial \beta} = T_{ik} \rho_{kj}$$

• Psips spawn along columns of the density matrix only. However, since $[\hat{\rho}, \hat{H}] = 0$, we can equally well solve the symmetrized Bloch equation

$$\frac{\partial \rho_{ij}}{\partial \beta} = \frac{1}{2} \left(T_{ik} \rho_{kj} + \rho_{ik} T_{kj} \right)$$

Now psips spawn along row and columns.

ρ_{kj}(β = 0) = δ_{kj}, so psips are initially scattered at random along the diagonal of the density matrix.

FCIQMC and DMQMC Compared

The DMQMC equation of motion

$$\frac{\partial \rho_{ij}}{\partial t} = \frac{1}{2} \left(T_{ik} \rho_{kj} + \rho_{il} T_{lj} \right)$$

can be rewritten in the form

$$\frac{\partial
ho_{ij}}{\partial t} = L_{ij,kl}
ho_{kl}$$

where $L_{ij,kl} = T_{ik}\delta_{jl} + T_{lj}\delta_{ik}$.

- FCIQMC finds the large eigenvalue of the matrix T_{ij}.
- DMQMC finds the largest eigenvalue of the matrix L_{ij,kl}, with ij and kl regarded as composite indices.

- Finite-temperature properties accessible.
- Expectation values of operators that do not commute with \hat{H} easily obtainable:

$$\langle \hat{O}
angle = rac{O_{ij}
ho_{ji}}{
ho_{kk}}$$

Problem 1

The dimension of the space of operators is the *square* of the dimension of the space of states.

But ...

• The number of determinants in the FCI space rises exponentially with the number of particles/sites *n*, and

$$N_D \propto e^{lpha n} \qquad \Rightarrow \qquad N_D^2 \propto (e^{lpha n})^2 = e^{lpha (2n)}$$

• FCIQMC for an *n*-site Hubbard model ~ DMQMC for an *n*/2-site Hubbard model. Not so bad.

Problem 2

The simulation goes straight past every inverse temperature β : you cannot stop to accumulate statistics. Necessary to run many β -loops and average.

But ...

- Every β-loop provides data at all inverse temperatures from β = 0 (T = ∞) to β large (T → 0).
- Independence of β -loops makes statistical analysis easy.

Outline

- Importance Sampling
- Importance-Sampled Results

Antiferromagnetic Heisenberg Hamiltonian (J > 0)

$$\hat{H} = J \sum_{\langle ij \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j = J \sum_{\langle ij \rangle} \left[\hat{S}_{iz} \hat{S}_{jz} + \frac{1}{2} (\hat{S}_i^+ \hat{S}_j^- + \hat{S}_i^- \hat{S}_j^+) \right]$$

- 2D square lattice is bipartite: no sign problem; no annihilation.
- Ground state and our simulations have $M_s = 0$.
- For 4 × 4 lattice, $M_s = 0$ Hilbert space has dimension $N_C = {}^{16}C_8 = 12870$. Direct diagonalisation possible.
- For 6×6 lattice, $N_C = 9.08 \times 10^9$.

4 × 4; 10³ psips; 10³ β -loops.

 $\langle \hat{H} \rangle$ (cont.)

4 × 4; 10⁵ psips; 10³ β -loops.

Staggered Magnetization

$$\langle \hat{M}^2 \rangle$$
, where $\hat{M} = \frac{1}{N} \sum_i (-1)^{x_i + y_i} \hat{S}_i$

4 \times 4; 10⁵ psips; 10³ β -loops.

Heat Capacity

$$C_h = -\beta^2 d \langle \hat{H} \rangle / d\beta = \beta^2 (\langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2)$$

Larger Systems

 6×6 ; 10⁵ psips; $5 \times 10^3 \beta$ -loops.

Psip Spreading

- As β increases, psips appear further and further from the diagonal of the density matrix.
- Evaluating

$$\langle \hat{O}
angle = rac{O_{ij}
ho_{ji}}{
ho_{kk}}$$

becomes more and more difficult.

Outline

Importance Sampling: Nick's Approach

Idea

Suppress psip population on density matrix elements ρ_{ij} with d(i, j) large.

- Multiply spawning rate from operators of excitation level d to operators of excitation level d' by $w_{d',d}$. Multiply reverse spawning rate by $w_{d,d'} = 1/w_{d',d}$.
- If *d*′ > *d*, *w*_{*d*′,*d*} < 1:
 - suppress spawning to operators further from the diagonal
 - enhance spawning to operators closer to the diagonal

Importance Sampling: Link to Standard Approach

The psips now sample the modified density matrix

$$\tilde{\rho}_{ij} = w_{d,d-1}w_{d-1,d-2}\dots w_{1,0}\rho_{ij} = \rho_{ij}^T \rho_{ij}$$

where $d = d(i, j) = d(j, i)$.

If ρ satisfies

$$rac{\partial
ho_{ij}}{\partial eta} = L_{ij,kl} \,
ho_{kl}$$

then

$$\frac{\partial(\rho_{ij}^{T}\rho_{ij})}{d\beta} = \left(\rho_{ij}^{T}L_{ij,kl}\frac{1}{\rho_{kl}^{T}}\right)\rho_{kl}^{T}\rho_{kl}$$

Importance Sampling: Link to Standard Approach

The psips now sample the modified density matrix

$$\tilde{\rho}_{ij} = w_{d,d-1}w_{d-1,d-2}\dots w_{1,0}\rho_{ij} = \rho_{ij}^T \rho_{ij}$$

where $d = d(i, j) = d(j, i)$.

If ρ satisfies

$$rac{\partial
ho_{ij}}{\partial eta} = L_{ij,kl} \,
ho_{kl}$$

then

$$\frac{d\tilde{\rho}_{ij}}{d\beta} = \left(\rho_{ij}^{T} L_{ij,kl} \frac{1}{\rho_{kl}^{T}}\right) \tilde{\rho}_{kl}$$

Outline

- Initial Results
- Importance Sampling

Importance-Sampled Results

 The weights are chosen to make the numbers of psips on each excitation level similar as β → ∞.

 It is convenient to switch the weights on gradually as the simulation progresses (i.e., ρ^T is β-dependent).

6×6 Heisenberg Model: Energy

6×6 Heisenberg Model: Energy

6×6 Heisenberg Model: Staggered Magnetization

 6×6 ; 10⁶ psips; 10 β -loops.

Successfully studied an 8 \times 8 Heisenberg model

- $M_s = 0$ Hilbert space dimension > 10^{19}
- Density matrix has > 10³⁸ elements

using the same psip population (10⁶) and only 10–100 times more β -loops!

Achievement

- Importance-sampled DMQMC works surprisingly well.
- Can be applied to large sign-problem-free systems.
- Yields full thermodynamics at all temperatures at once.
- Yields full density matrix and hence arbitrary expectation values.

Achievement

- Importance-sampled DMQMC works surprisingly well.
- Can be applied to large sign-problem-free systems.
- Yields full thermodynamics at all temperatures at once.
- Yields full density matrix and hence arbitrary expectation values.

Not bad for two undergraduate students!

Outlook

Open Questions

- Substantial population control errors in large systems need investigating.
- Severity of sign problem? Analogue of initiator approach?

Where is it useful?

- The thermal properties of tiny molecules are not very interesting.
- When there is a sign problem, we may not be able to tackle large enough systems to study phase diagrams.
- Entanglement measures such as Tr(ρ_{red} ln ρ_{red}) and the concurrence depend on reduced density matrices.
 DMQMC seems able to calculate these better than other methods.