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The Full Configuration Interaction Method

@ Expand the wave function in a basis of Slater determinants
W) =" cilDj)
i
@ The coefficients ¢; that minimise

(o) = oy

satisfy the matrix eigevalue problem
H,'jCj = EgCIC,'

where H,'j = <D,“:”Dl>



The FCIQMC Algorithm

The lowest eigenvector of the full-Cl matrix eigenproblem
Hijcj = E('):CIC,'

can be obtained by solving the imaginary-time Schrédinger
equation

aci(t)
ot




Sampling Algorithm

gci(t) _ Tyc(t)

@ Imagine a population of signed “psips” scattered through
the configuration space.
@ In one time step, a psip on D; may spawn children on any
configuration D; for which Tj; is non-zero.
@ The expected number of children spawned on D; is | TjAt|.
e If T; > 0, the children have the same sign as their parent.
e If Tj; < 0, they have the opposite sign.

Then
(@i)n+1 = (Qiyn+ (TijA1)(qj)n



Sampling Algorithm (cont.)

(@i)n+1 = (Qiyn + (TijA1)(qj)n

This is a first-order finite-difference approximation to the
imaginary-time Schrdédinger equation
aci(t)

—ar = Tic(h)

The FCIQMC psip dynamics solves the
imaginary-time Schrédinger equation.



Psip Cancellation

As with all fermion QMC methods, there is a sign problem.
Psips of both signs appear on the same configurations
and the positive and negative populations almost cancel.

@ To help control this problem, positive and negative psips on
the same determinant at the same time are cancelled out.

@ Similar psip cancellation algorithms have been tried many
times in continuum DMC. They do not work very well.

@ The surprise in Alavi’s work is that, for FCI spaces, psip
cancellation works much better.
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2D 18-site Hubbard model at half filling, U = 4t.
(Spencer, Blunt, and Foulkes, J. Chem. Phys. 136, 054110 (2012))
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DMQMC

@ The density operator p(8) = exp[—8(H — SI)] satisfies
the Bloch equation
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DMQMC

@ The density operator p(8) = exp[—A(H —

the Bloch equation

I

)] satisfies



DMQMC

@ The density operator p(8) = exp[—A(H —

the Bloch equation

op W aiva
g5 = ~(A-shp =T
a ..
%:Tikpkj

I

)] satisfies

@ This looks rather like the imaginary-time Schrédinger

equation.

ac;
ap

=T



Can we solve the Bloch equation using an FCIQMC-like
technique that works in the space of operators/matrices
instead of in the space of states/vectors?



Sampling Algorithm

@ Imagine a population of two-index psips scattered through
the configuration space of operators |k)(j.

@ In one time step, a psip on |k)(j| may spawn children on
any operator |i)(j| for which Tj is non-zero.

@ The expected number of children spawned on |i){j| is
| TiAt].
e If Tix > 0, the children have the same sign as their parent.
e If Ty < 0, they have the opposite sign.

@ Psips of opposite sign on the same operator cancel.



Sampling Algorithm (cont.)

Ipij
B Tikpkj

@ Psips spawn along golumns of the density matrix only.
However, since [p, H] = 0, we can equally well solve the
symmetrized Bloch equation

Opij 1
Tﬂ'l =5 (Tikpkj + Pik Tkj)
Now psips spawn along row and columns.

@ pj(B = 0) = dxj, SO psips are initially scattered at random

along the diagonal of the density matrix.



FCIQMC and DMQMC Compared

The DMQMC equation of motion

Opy _ 1

% — 2 (Tikpaj + pirTy)
can be rewritten in the form
Api
87'1 = Lijupu

where Lij,kl = T,-k(Sj, + T,,-(S,-k.

@ FCIQMC finds the large eigenvalue of the matrix Tj.

@ DMQMC finds the largest eigenvalue of the matrix Lj s,
with ij and kl regarded as composite indices.



Advantages of DMQMC

@ Finite-temperature properties accessible.

@ Expectation values of operators that do not commute with
H easily obtainable:
() = it
Pkk



Disadvantages of DMQMC

Problem 1
The dimension of the space of operators is the square of the

dimension of the space of states.

But ...
@ The number of determinants in the FCI space rises
exponentially with the number of particles/sites n, and

Np x e = N2  (e*")? = g*(2")

@ FCIQMC for an n-site Hubbard model ~ DMQMC for an
n/2-site Hubbard model. Not so bad.



Problem 2

The simulation goes straight past every inverse temperature j:
you cannot stop to accumulate statistics. Necessary to run
many S-loops and average.

But ...

@ Every g-loop provides data at all inverse temperatures
from 5 =0 (T = ) to S large (T — 0).
@ Independence of S-loops makes statistical analysis easy.
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The 2D Heisenberg Model

Antiferromagnetic Heisenberg Hamiltonian (J > 0)

N A A A A 1 aras . asa
H:JZS;.szJZ [Sizsjz+2(3rsj + 5 S;r)
(if) i)

@ 2D square lattice is bipartite: no sign problem; no
annihilation.

@ Ground state and our simulations have Mg = 0.

@ For 4 x 4 lattice, Ms = 0 Hilbert space has dimension
Nc = Cg = 12870. Direct diagonalisation possible.

@ For 6 x 6 lattice, No = 9.08 x 10°.
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Exact result
DMQMC result

Energy/JN

4 x 4;10° psips; 10% 3-loops.



(H) (cont.)
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4 x 4;10° psips; 10° 3-loops.



Staggered Magnetization

(M?), where M=, 5" ,(—1)%1%§;

Staggered magnetisation squared
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Heat Capacity
Ch = —R2d(H)/dB = B3((H?) — (F)?)
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Larger Systems

Energy/JN

4 x 4: No = 12870

0.0
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Psip Spreading
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— Diagonal elements
— Single excitations
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Psip Spreading (cont.)

@ As 3 increases, psips appear further and further from the
diagonal of the density matrix.
@ Evaluating
() = 2t
Pkk
becomes more and more difficult.
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Importance Sampling: Nick’'s Approach

Suppress psip population on density matrix elements pj;; with
d(i,j) large.

@ Multiply spawning rate from operators of excitation level d
to operators of excitation level d’ by wy 4. Multiply reverse
spawning rate by wy o = 1/Wgy g.

o Ifd >d, Wor g < 1:

@ suppress spawning to operators further from the diagonal
e enhance spawning to operators closer to the diagonal



Importance Sampling: Link to Standard Approach

@ The psips now sample the modified density matrix

~ T
Pij = Wd,d—1Wd—1,d-2 - - - W1,00j; = Pijj Pij

where d = d(i, j) = d(j, i).

@ If p satisfies
Opij
B Lij ki Pt

then

Apijry) 1
i) (1, 1) 7
a5 \li Lijki oL Pkl Pki



Importance Sampling: Link to Standard Approach

@ The psips now sample the modified density matrix

~ T
Pij = Wd,d—1Wd—1,d-2 - - - W1,00j; = Pijj Pij

where d = d(i, j) = d(j, i).

@ If p satisfies
Opij
B Lij ki Pt

then
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Importance-Sampled Results

@ The weights are chosen to make the numbers of psips on
each excitation level similar as 5 — oo.
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@ Itis convenient to switch the weights on gradually as the
simulation progresses (i.e., p’ is 3-dependent).



6 x 6 Heisenberg Model: Energy

0.0 | | | |
— Greens function MC ground state = -0.678871
— DMQMC result
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6 x 6; 10* psips; 10% 3-loops.
(note slight error)




6 x 6 Heisenberg Model: Energy

Energy/JN
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— Greens function MC ground state = -0.678871
— DMQMC result
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6 x 6; 10° psips; 10 B-loops.
(error removed)



6 x 6 Heisenberg Model: Staggered Magnetization
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6 x 6; 10° psips; 10 B-loops.
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Larger Systems

Successfully studied an 8 x 8 Heisenberg model

@ M = 0 Hilbert space dimension > 109
@ Density matrix has > 103 elements

using the same psip population (10) and only 10—100 times
more [-loops!



Summary

Achievement

@ Importance-sampled DMQMC works surprisingly well.
@ Can be applied to large sign-problem-free systems.
@ Yields full thermodynamics at all temperatures at once.

@ Yields full density matrix and hence arbitrary expectation
values.



Summary

Achievement

@ Importance-sampled DMQMC works surprisingly well.
@ Can be applied to large sign-problem-free systems.
@ Yields full thermodynamics at all temperatures at once.

@ Yields full density matrix and hence arbitrary expectation
values.

Not bad for two undergraduate students!



Outlook

Open Questions
@ Substantial population control errors in large systems need
investigating.
@ Severity of sign problem? Analogue of initiator approach?

Where is it useful?

@ The thermal properties of tiny molecules are not very
interesting.

@ When there is a sign problem, we may not be able to tackle
large enough systems to study phase diagrams.

@ Entanglement measures such as Tr(preq In preg) @nd the
concurrence depend on reduced density matrices.
DMQMC seems able to calculate these better than other
methods.
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