Some Estimates in Variational Quantum Monte Carlo

J.R. Trail and R. Maezono

School of Information Science, JAIST, Nomi, Ishikawa 923-1292, Japan

July 2009

- Variational Monte Carlo
- \bullet 'Standard' VMC is $P=\psi^2$, and failure of CLT is an artifact of this
- Conditions and expressions for Normally distributed estimates in general sampling
- \bullet Efficient sampling Monte Carlo implemented not sampling from $P=\psi^2$
- Estimates for energies, excitation energies, ionisation energies, transition moments
- Results for first row atoms and some molecules

VMC and General Sampling

Sample with $P=\psi^2/w$ and construct an estimate:

$$\overline{\mu} = \frac{\sum w_i E_L(\mathbf{R}_i)}{\sum w_i}$$

• If both variances exist, Fieller's theorem tells us this is a sample from a Normal distribution with:

$$\mu = \frac{\int \psi^2 E_L d\mathbf{R}}{\int \psi^2 d\mathbf{R}} \quad , \quad \sigma^2 = \frac{1}{r} \frac{\int \psi^2 / w d\mathbf{R} \int w \psi^2 (E_L - \mu)^2 d\mathbf{R}}{\left[\int \psi^2 d\mathbf{R}\right]^2}$$

We can estimate the variance:

$$\overline{\sigma}^2 = \frac{r}{r-1} \frac{\sum w_i^2 \left(E_L(\mathbf{R}_i) - \overline{\mu} \right)^2}{\left(\sum w_i \right)^2}$$

- ullet $\overline{\sigma}^2
 eq (\text{sample variance})/r$
- These equations do not follow from the usual (univariate) Central Limit Theorem
- ullet Zero Variance Principle is still valid for exact $\psi \Rightarrow \overline{\sigma} = 0$
- ightarrow The error is **controlled** if the bivariate CLT is **valid** and $\langle w \rangle \neq 0$

Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)

When is it Normal?

For standard sampling $P=\psi^2$ (w=1)

- ullet Normal for standard sampling and total energy ($P \propto 1/x^4$)
- Not Normal for standard sampling used with correlated sampling, forces, and many other estimates
- ullet Different choices of P (equivalently w) are possible
- ullet Changes computational cost: flops for evaluating P
- Changes distribution of random errors
- Failure of CLT from singularities in averaged quantities on the nodal surface

For some P (equivalently w) the variance is infinite, and CLT is invalid

ightarrow Goal is to improve efficiency and reinstate the CLT where it is invalid for standard sampling

Why is Normality so important?

We want Normally distributed estimates, from a general form of the Central Limit Theorem

If the distribution the estimates are drawn from is *not* normal then it is a Stable Law:

- Normal distribution and an example Stable law
- ullet Probability that a sample fall outside of central interval size 2x
- Width parameter is representative of error for Normal, not for Stable
- Width parameter is estimateable for Normal sample standard error
- Width parameter is not estimateable for Stable sample standard error is unrelated

Efficient sampling in VMC

- ullet Draw position vectors from $P=|D_1|^2+|D_2|^2$ a, no Jastrow, Backflow
- → Zero on coalescence planes only, non-zero on rest of nodal surface
- ullet Perform Metropolis accept/reject with P, and use $w=\psi^2/P$
- Using r samples, the Bivariate CLT, and Fiellers theorem provides the Normal estimate

$$\overline{E}_{tot} = \frac{\sum w_i E_L(\mathbf{R}_i)}{\sum w_i} \quad , \quad \overline{\sigma}^2 = \frac{r}{r-1} \frac{\sum w_i^2 \left(E_L(\mathbf{R}_i) - \overline{E}_{tot} \right)^2}{\left(\sum w_i \right)^2}$$

ullet (wE_L,w) has no singularities and is bounded \Rightarrow all moments exist \Rightarrow distribution is Normal

^aTrail JR and Maezono R, JCP (2010)

Efficient sampling in VMC

Optimisation and estimation of total energy:

- All-electron
- First row atoms + some diatomic molecules
- Numerical orbitals from ATSP2K and 2DHF (MCSCF and HF)
- \bullet Jastrow, Backflow, and $5-86~\mathrm{CSFs}$
- 48 h desktop time/system
- \bullet r for Final estimate:monitor estimate:optimisation r=9000:150:1

Efficient sampling in VMC

- Improved results for less computational effort
- \bullet For a given error $5-35\times$ faster than standard sampling
- Surfaces for energy optimisation are Normal
- Do we need anisotropic Jastrow/Backflow?

Distribution of more general estimates

What is the distribution for more complex estimates?

Example: Energy differences

$$\Delta E_{tot} = \frac{\int \psi_1^2 E_1 d\mathbf{R}}{\int \psi_1^2 d\mathbf{R}} - \frac{\int \psi_2^2 E_2 d\mathbf{R}}{\int \psi_2^2 d\mathbf{R}}$$

ullet Sample with $P=|D_1|^2+|D_2|^2$ (no nodal surface, only coalescence planes)

Est
$$[\Delta E_{tot}]$$
 = $\frac{\sum w_1 E_1}{\sum w_1} - \frac{\sum w_2 E_2}{\sum w_2}$
 = $\frac{S_2}{S_1} - \frac{S_4}{S_3}$

- ullet Elements in sums S_n are correlated only when in same 'time slots'
- ⇒ Multivariate CLT is true
- \Rightarrow Each S_n is Normal
- \Rightarrow Correlation between S_n and S_m is linear

Algebra for sums of random variables

What is the distribution of

$$\Delta \mathsf{E}_{tot} = rac{\mathsf{S}_2 \mathsf{S}_3 - \mathsf{S}_1 \mathsf{S}_4}{\mathsf{S}_1 \mathsf{S}_3}$$
 , $\mathsf{S}_n = \sum_i X_n(i)$

with parameters expressed in terms of the estimateable

$$\mathbb{E} \left[\mathsf{X}_{n}(i) \right] = \mu_{n}$$

$$Var \left[\mathsf{X}_{n}(i) \right] = C_{nn}$$

$$Cov \left[\mathsf{X}_{m}(i), \mathsf{X}_{n}(j) \right] = C_{nm} \delta_{i,j}$$

Algebra for sums of random variables : Sums

Adding sums of the random variables, trivial to show that:

Distribution is Normal

$$\mathbb{E}\left[\mathsf{S}_{1} + \mathsf{S}_{2}\right] = r(\mu_{1} + \mu_{2})$$

$$Var\left[\mathsf{S}_{1} + \mathsf{S}_{2}\right] = r(C_{11} + 2.C_{12} + C_{22})$$

$$Cov\left[\mathsf{S}_{1} + \mathsf{S}_{2}, \mathsf{S}_{3} + \mathsf{S}_{4}\right] = r(C_{13} + C_{14} + C_{23} + C_{24})$$

- \rightarrow All the $\mathsf{S}_1+\mathsf{S}_2$ are Normal
- ightarrow Correlation between any $\mathsf{S}_j + \mathsf{S}_k$ and $\mathsf{S}_l + \mathsf{S}_m$ is linear

Algebra for sums of random variables: Quotients

Quotients of sums of the random variables, Fiellers theorem provides:

Distribution is Normal

$$\mathbb{E}\left[\frac{\mathsf{S}_{2}}{\mathsf{S}_{1}}\right] = \frac{\mu_{2}}{\mu_{1}}$$

$$Var\left[\frac{\mathsf{S}_{2}}{\mathsf{S}_{1}}\right] = \frac{1}{r}\frac{1}{\mu_{1}^{2}}\left[C_{22} - 2\frac{\mu_{2}}{\mu_{1}}C_{12} + \left(\frac{\mu_{2}}{\mu_{1}}\right)^{2}C_{11}\right]$$

• No expression for correlation of different quotients

So,

$$\frac{\mathsf{S}_1 + \mathsf{S}_2}{\mathsf{S}_3 + \mathsf{S}_4}$$

is Normal and parameters are estimateable

Products of sums of the random variables:

- ullet What is the bivariate distribution of $(\mathsf{S}_1\mathsf{S}_2,\mathsf{S}_3\mathsf{S}_4)$?
- ullet Derive co-moments and compare with bivariate Normal....define $\Delta {\sf X}_1(i) = {\sf X}_1(i) \mu_1$

$$\Delta(S_1S_2) = S_1.S_2 - \mathbb{E}[S_1.S_2]
= \sum_{ij} \Delta X_1(i) \Delta X_2(j) + r \sum_i [\mu_1 \Delta X_2(i) + \mu_2 \Delta X_1(i)] - rC_{12}$$

ullet Co-moments are defined by $\mu_{m,n}=\mathbb{E}\left[\Delta(\mathsf{S}_1\mathsf{S}_2)^m.\Delta(\mathsf{S}_3\mathsf{S}_4)^n
ight]$

$$\mu_{m,n} = \mathbb{E}\left[\left(\sum_{ij} \Delta \mathsf{X}_1(i) \Delta \mathsf{X}_2(j) + r \sum_{i} \left[\mu_1 \Delta \mathsf{X}_2(i) + \mu_2 \Delta \mathsf{X}_1(i)\right] - r C_{12}\right)^m \times \left(\sum_{ij} \Delta \mathsf{X}_3(i) \Delta \mathsf{X}_4(j) + r \sum_{i} \left(\mu_3 \Delta \mathsf{X}_4(i) + \mu_4 \Delta \mathsf{X}_3(i)\right] - r C_{34}\right)^n\right]$$

- Multiply out and count equivalent terms
- Pick out the dominant r terms.

Powers of r in each term after multiplication:

- ullet 2^{nd} order part: Powers p_1,q_1 from equivalence, none from prefactor
- ullet 1 order part: Powers p_2,q_2 from equivalence, p_2,q_2 from prefactor
- ullet 0 order part: Powers p_3,q_3 from equivalence, p_3,q_3 from prefactor
- Multiplication gives $p_1 + p_2 + p_3 = m$, $q_1 + q_2 + q_3 = n$
- ullet Count powers of r from prefactors [r], and from sums (r)
- \Rightarrow Terms have powers of r:

$$[1]^{p_1}(r)^{p_1}[r]^{p_2}(r)^{p_2}[r]^{p_3}(1)^{p_3}.[1]^{q_1}(r)^{q_1}[r]^{q_2}(r)^{q_2}[r]^{q_3}(1)^{q_3}\mathbb{E}\left[\ldots\right]$$

But Expectations are zero if any index is unique:

$$\mathbb{E} \left[\Delta \mathsf{X}_{1}(i).\Delta \mathsf{X}_{2}(j).\Delta \mathsf{X}_{3}(k) \cdots \right] = \mathbb{E} \left[\Delta \mathsf{X}_{1}(i) \right].\mathbb{E} \left[\Delta \mathsf{X}_{2}(j).\Delta \mathsf{X}_{3}(k) \cdots \right] = 0$$

Overcounting due to including zero expectations values

Count only terms with no unique indices:

$$r^{(m+n)+(p_2+q_2)/2}\mathbb{E}\left[\ldots\right]$$
 for (p_2+q_2) even $r^{(m+n)+(p_2+q_2+1)/2}\mathbb{E}\left[\ldots\right]$ for (p_2+q_2) odd

- \Rightarrow In large r limit $p_2+q_2=m+n$ terms dominate ($p_1=p_3=q_1=q_3=0$)
- \Rightarrow In large r limit the co-moments are same as those for *sums*:

$$\mathbb{E}\left[\Delta(\mathsf{S}_{1}\mathsf{S}_{2})^{m}.\Delta(\mathsf{S}_{3}\mathsf{S}_{4})^{n}\right] = r^{m+n}\mathbb{E}\left[\left(\sum_{i}\left[\mu_{1}\Delta\mathsf{X}_{2}(i) + \mu_{2}\Delta\mathsf{X}_{1}(i)\right]\right)^{m}\right] \times \left(\sum_{i}\left[\mu_{3}\Delta\mathsf{X}_{4}(i) + \mu_{4}\Delta\mathsf{X}_{3}(i)\right]\right)^{n}\right]$$

ullet In large r limit $(\mathsf{S}_1\mathsf{S}_2,\mathsf{S}_3\mathsf{S}_4)$ is bivariate Normal with

$$\mathbb{E}[\mathsf{S}_1\mathsf{S}_2] = r^2\mu_1.\mu_2$$

$$Var[\mathsf{S}_1\mathsf{S}_2] = r^3(\mu_1^2C_{22} + 2\mu_1\mu_2C_{12} + \mu_2^2C_{11})$$

$$Cov[\mathsf{S}_1\mathsf{S}_2,\mathsf{S}_3\mathsf{S}_4] = r^3(\mu_1\mu_3C_{24} + \mu_1\mu_4C_{23} + \mu_2\mu_3C_{14} + \mu_2\mu_4C_{13})$$

ightarrow We have rules for obtaining the distribution of combinations of sums of random variables (that are Normal)

Energy differences

Est
$$[\Delta E_{tot}]$$
 = $\frac{\sum w_1 E_1}{\sum w_1} - \frac{\sum w_2 E_2}{\sum w_2}$
 = $\frac{\mathsf{S}_2 \mathsf{S}_3 - \mathsf{S}_1 \mathsf{S}_4}{\mathsf{S}_1 \mathsf{S}_2}$

$$\overline{\Delta E}_{tot} = \frac{\overline{\mu}_2}{\overline{\mu}_1} - \frac{\overline{\mu}_4}{\overline{\mu}_3}
\frac{r-1}{r} \overline{\sigma}^2 = \frac{\sum w_1^2 (E_1 - \overline{\mu}_1)^2}{\left[\sum w_1\right]^2} - 2 \frac{\sum w_1 w_2 (E_1 - \overline{\mu}_1) (E_2 - \overline{\mu}_2)}{\left[\sum w_1\right] \left[\sum w_2\right]} + \frac{\sum w_2^2 (E_2 - \overline{\mu}_2)^2}{\left[\sum w_2\right]^2}$$

Sufficient conditions for this estimate to be Normal are

- All moments exist
- All means in the denominator are non-zero
- At least one mean in each product on numerator is non-zero

Carbon atom excitation energies

- \bullet Calculation as for GS (Multideterminant and numerical orbitals from MCSCF ~ 300 parameters)
- E_{tot} $\begin{bmatrix} 2S+1L \end{bmatrix} E_{tot} \begin{bmatrix} 3P \end{bmatrix}$
- Lowest two eigenstates for each Term
- Inversion symmetry conserved by Jastrow and Backflow
- Term approximately conserved by introduction of Jastrow and Backflow
- Energy minimisation approximately valid for lowest two energies for each Term
- Sample with $P = D_1 \left[{^{2S+1}L} \right]^2 + D_2 \left[{^{2S+1}L} \right]^2 + D_1 \left[{^3P} \right]^2 + D_2 \left[{^3P} \right]^2$

Carbon atom excitation energies

- \bullet C $^{2S+1}L \rightarrow$ C 3P
- ullet Grey: experimental Spectroscopic values \pm 'chemical accuracy'

Carbon atom excitation energies

- ullet C $^{2S+1}L o$ C 3P
- ullet Grey: experimental Spectroscopic values \pm 'chemical accuracy'
- 48 energy difference estimates for each excitation

Error in Carbon atom excitation energies

- CI results used for allocating transitions to lines
- CI AS and orbitals chosen empirically to reproduce spectrosopy

Error in Carbon atom excitation energies

- Chemical accuracy from VMC + efficient sampling
- NOT spectroscopic accuracy
- Estimate of difference not difference of estimates
- \bullet Correlation reduces error by 10-70%

Ionization energies

• How do we deal with changes in electron number?

$$E_{ion} = E_n - E_{n-1}$$

$$= \frac{\int \psi_1^2 E_1 d\mathbf{R}_n}{\int \psi_1^2 d\mathbf{R}_n} - \frac{\int \psi_2^2 E_2 d\mathbf{R}_{n-1}}{\int \psi_2^2 d\mathbf{R}_{n-1}}$$

- Sampled $P_n(\mathbf{R}_n) = D_1(n)^2 + D_2(n)^2$
- ullet For estimating E_{n-1} ignore *one* 3d sample vector, so ${f R}_n o {f R}_{n-1}$
- ullet Distribution of (w_2E_2,w_2) given by integrating P_n analytically

$$P_{n-1} = \int D_1(n)^2 + D_2(n)^2 d^3 \mathbf{r}_n$$

$$= \int [\phi_1(\mathbf{r}_n) \cdot C_1(1, n) + \phi_2(\mathbf{r}_n) \cdot C_1(2, n) + \dots]^2 + [\phi_1(\mathbf{r}_n) \cdot C_2(1, n) + \phi_2(\mathbf{r}_n) \cdot C_2(2, n) + \dots]^2 d^3 \mathbf{r}_n$$

$$= [C_1(1, n)^2 + C_1(2, n)^2 + \dots] + [C_2(1, n)^2 + C_2(2, n)^2 + \dots]$$

lonization energies

ullet Provides distributions of (w_1E_1,w_1,w_2E_2,w_2) in terms of weights

$$w_1(\mathbf{R}_n) = \psi_1^2(\mathbf{R}_n)/P_n(\mathbf{R}_n)$$

$$w_2(\mathbf{R}_{n-1}) = \psi_2^2(\mathbf{R}_{n-1})/P_{n-1}(\mathbf{R}_{n-1})$$

- ullet P_n is zero on coalescence planes only
- \bullet P_{n-1} is zero on coalescence planes only
- ullet All sums are Normal and linearly correlated o Normal estimate

Ionization energies

- First row neutral atoms and ions
- Orbitals from same source as before
- Jastrow/Backflow and computational cost as before
- Optimise neutral atom and ion seperately, with energy minimisation
- Estimate energy difference/error as for excitation energies

Ionization energies

- Experimental ionization energies
- VMC estimated energy difference

Error in Ionization energies

- Close but *not* chemical accuracy
- Maybe we need T/Q excitations?
- \bullet Correlation reduces error by 0-40%

Spectroscopic line widths characterised by transition dipole moments

$$\Delta_{\omega} = \frac{3}{2} \Delta E \sum_{m} |\langle \psi_0 | \mathbf{R} | \psi_m \rangle|^2$$

with sum over total angular momentum eigenstates.

Not done yet ... start with estimates for transition dipole moments:

$$t_{12} = |\langle \psi_1 | \sum_i \mathbf{r}_i | \psi_2 \rangle|^2$$

- Sample using $P = D_1(1)^2 + D_2(1)^2 + D_1(2)^2 + D_2(2)^2$
- Get an error estimate from random variable algebra
- Not zero variance...

Estimate:

$$t_{12} = |\langle \psi_1 | \sum_{\mathbf{r}_i | \psi_2 \rangle|^2}$$

$$= \frac{\left[\int \psi_1 \psi_2(x_1 + \dots + x_n) d\mathbf{R} \right]^2 + \left[\int \psi_1 \psi_2(y_1 + \dots + y_n) d\mathbf{R} \right]^2 + \left[\int \psi_1 \psi_2(z_1 + \dots + z_n) d\mathbf{R} \right]^2}{\int \psi_1^2 d\mathbf{R} \int \psi_2^2 d\mathbf{R}}$$

- Define weights $w_1 = \psi_1^2/P$, $w_2 = \psi_2^2/P$
- Analyse as before ...

$$\mathsf{Est}\left[t_{12}\right] = \frac{\mathsf{S}_{1}^{2} + \mathsf{S}_{2}^{2} + \mathsf{S}_{3}^{2}}{\mathsf{S}_{4}.\mathsf{S}_{5}}$$

• Normally distributed with estimateable mean and variance:

• Replace C's and μ 's with unbiased estimates

• Many are non-normal and zero from symmetry considerations...

- ... so we drop them
- \bullet Random error $\sim 1\%$

Conclusions

- Normal errors can be reintroduced
- More computationally efficient than standard sampling
- Optimisation is on a Normal surface, unlike standard sampling
- Distribution of random error can be derived for general estimates and sampling

Normal and efficient estimates implemented for:

- Total energies
- Energy differences and Ionization energies
- Transition moments

Next?

- Spectroscopic line widths
- Electron affinities
- Optimise orthogonalised trial wavefunctions for more excited states
- Normal force estimates and geometery optimisation surfaces
- Generalised DMC