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• Variational Monte Carlo

• ’Standard’ VMC is P = ψ2, and failure of CLT is an artifact of this

• Conditions and expressions for Normally distributed estimates in general sampling

• Efficient sampling Monte Carlo implemented - not sampling from P = ψ2

• Estimates for energies, excitation energies, ionisation energies, transition moments

• Results for first row atoms and some molecules
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VMC and General Sampling

Sample with P = ψ2/w and construct an estimate:

µ =

∑

wiEL(Ri)
∑

wi

• If both variances exist, Fieller’s theorem tells us this is a sample from a Normal distribution with:

µ =

∫

ψ2ELdR
∫

ψ2dR
, σ2 =

1

r

∫

ψ2/wdR
∫

wψ2(EL − µ)2dR
[∫

ψ2dR
]2

• We can estimate the variance:

σ2 =
r

r − 1

∑

w2
i (EL(Ri)− µ)2

(
∑

wi)
2

• σ2 6= (sample variance)/r

• These equations do not follow from the usual (univariate) Central Limit Theorem

• Zero Variance Principle is still valid - for exact ψ⇒ σ = 0

→ The error is controlled if the bivariate CLT is valid and 〈w〉 6= 0

Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)
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When is it Normal ?

For standard sampling P = ψ2 (w = 1)

• Normal for standard sampling and total energy (P ∝ 1/x4)

• Not Normal for standard sampling used with correlated sampling, forces, and many other estimates

• Different choices of P (equivalently w) are possible

• Changes computational cost: flops for evaluating P

• Changes distribution of random errors

• Failure of CLT from singularities in averaged quantities on the nodal surface

For some P (equivalently w) the variance is infinite, and CLT is invalid

→ Goal is to improve efficiency and reinstate the CLT where it is invalid for standard sampling
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Why is Normality so important ?

We want Normally distributed estimates, from a general form of the Central Limit Theorem

If the distribution the estimates are drawn from is not normal then it is a Stable Law :

S(3
2
, 0, 1, 0; 0)

N(0, 1)

2x

P
(|
X
|
>
x
)

10410010−2

100

10−5

• Normal distribution and an example Stable law

• Probability that a sample fall outside of central interval size 2x

• Width parameter is representative of error for Normal, not for Stable

• Width parameter is estimateable for Normal - sample standard error

• Width parameter is not estimateable for Stable - sample standard error is unrelated
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Efficient sampling in VMC

• Draw position vectors from P = |D1|
2 + |D2|

2 a, no Jastrow, Backflow

→ Zero on coalescence planes only, non-zero on rest of nodal surface

• Perform Metropolis accept/reject with P , and use w = ψ2/P

• Using r samples, the Bivariate CLT, and Fiellers theorem provides the Normal estimate

Etot =

∑

wiEL(Ri)
∑

wi
, σ2 =

r

r − 1

∑

w2
i

(

EL(Ri)− Etot

)2

(
∑

wi)
2

• (wEL, w) has no singularities and is bounded ⇒ all moments exist ⇒ distribution is Normal

aTrail JR and Maezono R, JCP (2010)
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Efficient sampling in VMC

Optimisation and estimation of total energy:

• All-electron

• First row atoms + some diatomic molecules

• Numerical orbitals from ATSP2K and 2DHF (MCSCF and HF)

• Jastrow, Backflow, and 5− 86 CSFs

• 48 h desktop time/system

• r for Final estimate:monitor estimate:optimisation r = 9000 : 150 : 1

Page 7



Efficient sampling in VMC

E
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r
r
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)
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• Improved results for less computational effort

• For a given error 5− 35× faster than standard sampling

• Surfaces for energy optimisation are Normal

• Do we need anisotropic Jastrow/Backflow ?

Page 8



Distribution of more general estimates

What is the distribution for more complex estimates ?

Example: Energy differences

∆Etot =

∫

ψ2
1E1dR

∫

ψ2
1dR

−

∫

ψ2
2E2dR

∫

ψ2
2dR

• Sample with P = |D1|
2 + |D2|

2 (no nodal surface, only coalescence planes)

Est [∆Etot] =

∑

w1E1
∑

w1

−

∑

w2E2
∑

w2

=
S2

S1

−
S4

S3

• Elements in sums Sn are correlated only when in same ‘time slots’

⇒ Multivariate CLT is true

⇒ Each Sn is Normal

⇒ Correlation between Sn and Sm is linear
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Algebra for sums of random variables

What is the distribution of

∆Etot =
S2S3 − S1S4

S1S3

, Sn =
∑

i

Xn(i)

with parameters expressed in terms of the estimateable

E [Xn(i)] = µn

V ar [Xn(i)] = Cnn

Cov [Xm(i),Xn(j)] = Cnmδi,j

?
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Algebra for sums of random variables : Sums

Adding sums of the random variables, trivial to show that:

• Distribution is Normal

E [S1 + S2] = r(µ1 + µ2)

V ar [S1 + S2] = r(C11 + 2.C12 + C22)

Cov [S1 + S2, S3 + S4] = r(C13 + C14 + C23 + C24)

→ All the S1 + S2 are Normal

→ Correlation between any Sj + Sk and Sl + Sm is linear
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Algebra for sums of random variables : Quotients

Quotients of sums of the random variables, Fiellers theorem provides:

• Distribution is Normal

E

[

S2

S1

]

=
µ2

µ1

V ar

[

S2

S1

]

=
1

r

1

µ2
1

[

C22 − 2
µ2

µ1

C12 +

(

µ2

µ1

)2

C11

]

• No expression for correlation of different quotients

So,

S1 + S2

S3 + S4

is Normal and parameters are estimateable
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Algebra for sums of random variables : Products

Products of sums of the random variables:

• What is the bivariate distribution of (S1S2, S3S4) ?

• Derive co-moments and compare with bivariate Normal....define ∆X1(i) = X1(i)− µ1

∆(S1S2) = S1.S2 − E [S1.S2]

=
∑

ij

∆X1(i)∆X2(j) + r
∑

i

[µ1∆X2(i) + µ2∆X1(i)]− rC12

• Co-moments are defined by µm,n = E [∆(S1S2)
m.∆(S3S4)

n]

µm,n = E

[(

∑

ij

∆X1(i)∆X2(j) + r
∑

i

[µ1∆X2(i) + µ2∆X1(i)]− rC12

)m

×

(

∑

ij

∆X3(i)∆X4(j) + r
∑

i

(µ3∆X4(i) + µ4∆X3(i)]− rC34

)n]

• Multiply out and count equivalent terms

• Pick out the dominant r terms.
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Algebra for sums of random variables : Products

Powers of r in each term after multiplication:

• 2nd order part: Powers p1, q1 from equivalence, none from prefactor

• 1st order part: Powers p2, q2 from equivalence, p2, q2 from prefactor

• 0th order part: Powers p3, q3 from equivalence, p3, q3 from prefactor

• Multiplication gives p1 + p2 + p3 = m, q1 + q2 + q3 = n

• Count powers of r from prefactors [r], and from sums (r)

⇒ Terms have powers of r:

[1]p1(r)p1 [r]p2(r)p2[r]p3(1)p3 .[1]q1(r)q1 [r]q2(r)q2 [r]q3(1)q3E [. . .]

But Expectations are zero if any index is unique:

E [∆X1(i).∆X2(j).∆X3(k) · · ·] = E [∆X1(i)] .E [∆X2(j).∆X3(k) · · ·]

= 0

• Overcounting due to including zero expectations values
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Algebra for sums of random variables : Products

Count only terms with no unique indices:

r(m+n)+(p2+q2)/2E [. . .] for (p2 + q2) even

r(m+n)+(p2+q2+1)/2
E [. . .] for (p2 + q2) odd

⇒ In large r limit p2 + q2 = m+ n terms dominate (p1 = p3 = q1 = q3 = 0)

⇒ In large r limit the co-moments are same as those for sums:

E [∆(S1S2)
m.∆(S3S4)

n] = rm+n
E

[(

∑

i

[µ1∆X2(i) + µ2∆X1(i)]

)m

×

(

∑

i

[µ3∆X4(i) + µ4∆X3(i)]

)n]
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Algebra for sums of random variables : Products

• In large r limit (S1S2, S3S4) is bivariate Normal with

E[S1S2] = r2µ1.µ2

V ar[S1S2] = r3(µ2
1C22 + 2µ1µ2C12 + µ2

2C11)

Cov[S1S2, S3S4] = r3(µ1µ3C24 + µ1µ4C23 + µ2µ3C14 + µ2µ4C13)

→ We have rules for obtaining the distribution of combinations of sums of random variables (that are

Normal)
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Energy differences

Est [∆Etot] =

∑

w1E1
∑

w1

−

∑

w2E2
∑

w2

=
S2S3 − S1S4

S1S2

∆Etot =
µ2

µ1

−
µ4

µ3

r − 1

r
σ2 =

∑

w2
1(E1 − µ1)

2

[
∑

w1]
2 − 2

∑

w1w2(E1 − µ1)(E2 − µ2)

[
∑

w1] [
∑

w2]
+

∑

w2
2(E2 − µ2)

2

[
∑

w2]
2

Sufficient conditions for this estimate to be Normal are

• All moments exist

• All means in the denominator are non-zero

• At least one mean in each product on numerator is non-zero
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Carbon atom excitation energies

• Calculation as for GS (Multideterminant and numerical orbitals from MCSCF ∼ 300 parameters)

• Etot

[

2S+1L
]

− Etot [
3P ]

• Lowest two eigenstates for each Term

• Inversion symmetry conserved by Jastrow and Backflow

• Term approximately conserved by introduction of Jastrow and Backflow

• Energy minimisation approximately valid for lowest two energies for each Term

• Sample with P = D1

[

2S+1L
]2

+D2

[

2S+1L
]2

+D1 [
3P ]

2
+D2 [

3P ]
2
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Carbon atom excitation energies

∆
E

(a
.u
.)

5P e1F o3F o3So3Se3De3Do1P e1P o5So1Se1Do1De3P o

0.5

0.25

0

• C 2S+1L→ C 3P

• Grey: experimental Spectroscopic values ± ’chemical accuracy’
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Carbon atom excitation energies

∆
E

(a
.u
.)

5P e1F o3F o3So3Se3De3Do1P e1P o5So1Se1Do1De3P o

0.5

0.25

0

• C 2S+1L→ C 3P

• Grey: experimental Spectroscopic values ± ’chemical accuracy’

• 48 energy difference estimates for each excitation
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Error in Carbon atom excitation energies

∆
E

C
I
−

∆
E

ex
p
(a
.u
.)

5P e1F o3F o3So3Se3De3Do1P e1P o5So1Se1Do1De3P o3P e

0.02

0.01

0

-0.01

• CI results used for allocating transitions to lines

• CI AS and orbitals chosen empirically to reproduce spectrosopy
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Error in Carbon atom excitation energies

∆
E

V
M

C
−

∆
E

ex
p
(a
.u
.)

5P e1F o3F o3So3Se3De3Do1P e1P o5So1Se1Do1De3P o3P e

0.02

0.01

0

-0.01

• Chemical accuracy from VMC + efficient sampling

• NOT spectroscopic accuracy

• Estimate of difference not difference of estimates

• Correlation reduces error by 10− 70%
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Ionization energies

• How do we deal with changes in electron number?

Eion = En − En−1

=

∫

ψ2
1E1dRn

∫

ψ2
1dRn

−

∫

ψ2
2E2dRn−1

∫

ψ2
2dRn−1

• Sampled Pn(Rn) = D1(n)
2 +D2(n)

2

• For estimating En−1 ignore one 3d sample vector, so Rn → Rn−1

• Distribution of (w2E2, w2) given by integrating Pn analytically

Pn−1 =

∫

D1(n)
2 +D2(n)

2d3rn

=

∫

[φ1(rn).C1(1, n) + φ2(rn).C1(2, n) + . . .]2 + [φ1(rn).C2(1, n) + φ2(rn).C2(2, n) + . . .]2 d3rn

=
[

C1(1, n)
2 + C1(2, n)

2 + . . .
]

+
[

C2(1, n)
2 + C2(2, n)

2 + . . .
]
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Ionization energies

• Provides distributions of (w1E1, w1, w2E2, w2) in terms of weights

w1(Rn) = ψ2
1(Rn)/Pn(Rn)

w2(Rn−1) = ψ2
2(Rn−1)/Pn−1(Rn−1)

• Pn is zero on coalescence planes only

• Pn−1 is zero on coalescence planes only

• All sums are Normal and linearly correlated → Normal estimate
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Ionization energies

• First row neutral atoms and ions

• Orbitals from same source as before

• Jastrow/Backflow and computational cost as before

• Optimise neutral atom and ion seperately, with energy minimisation

• Estimate energy difference/error as for excitation energies
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Ionization energies

I
(a
.u
.)

NeFONCBBeLi

0.8

0.6

0.4

0.2

0

• Experimental ionization energies

• VMC estimated energy difference
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Error in Ionization energies

I V
M

C
−
I e

x
p
(a
.u
.)

NeFONCBBeLi

0.005

0

-0.005

-0.01

• Close but not chemical accuracy

• Maybe we need T/Q excitations ?

• Correlation reduces error by 0− 40%
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Transition moments

Spectroscopic line widths characterised by transition dipole moments

∆ω =
3

2
∆E

∑

m

|〈ψ0|R|ψm〉|
2

with sum over total angular momentum eigenstates.

Not done yet ... start with estimates for transition dipole moments:

t12 = |〈ψ1|
∑

i

ri|ψ2〉|
2

• Sample using P = D1(1)
2 +D2(1)

2 +D1(2)
2 +D2(2)

2

• Get an error estimate from random variable algebra

• Not zero variance...
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Transition moments

Estimate:

t12 = |〈ψ1|
∑

ri|ψ2〉|
2

=

[∫

ψ1ψ2(x1 + . . .+ xn)dR
]2

+
[∫

ψ1ψ2(y1 + . . .+ yn)dR
]2

+
[∫

ψ1ψ2(z1 + . . .+ zn)dR
]2

∫

ψ2
1dR

∫

ψ2
2dR

• Define weights w1 = ψ2
1/P , w2 = ψ2

2/P

• Analyse as before ...

Est [t12] =
S2
1 + S2

2 + S2
3

S4.S5

• Normally distributed with estimateable mean and variance:

t12 =
µ2
1 + µ2

2 + µ2
3

µ4µ5

rµ2
4µ

2
5V ar[t12] =

[

4µ2
1C11 + 4µ2

2C22 + 4µ2
3C33 + 8µ1µ2C12 + 8µ1µ3C13 + 8µ2µ3C23

]

−2t12 [2µ1µ5C14 + 2µ2µ5C24 + 2µ3µ5C34 + 2µ1µ4C15 + 2µ2µ4C25 + 2µ3µ4C35]

+t
2
12

[

µ2
5C44 + 2µ4µ5C45 + µ2

4C55

]

• Replace C ’s and µ’s with unbiased estimates
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Transition moments

t 1
2
(a
.u
.)

5P e1F o3F o3So3Se3De3Do1P e1P o5So1Se1Do1De3P o

0.4

0.3

0.2

0.1

0

• Many are non-normal and zero from symmetry considerations...
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Transition moments

t 1
2
(a
.u
.)

5P e1F o3F o3So3Se3De3Do1P e1P o5So1Se1Do1De3P o

0.4

0.3

0.2

0.1

0

• ... so we drop them

• Random error ∼ 1%
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Conclusions

• Normal errors can be reintroduced

• More computationally efficient than standard sampling

• Optimisation is on a Normal surface, unlike standard sampling

• Distribution of random error can be derived for general estimates and sampling

Normal and efficient estimates implemented for:

• Total energies

• Energy differences and Ionization energies

• Transition moments
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Next?

• Spectroscopic line widths

• Electron affinities

• Optimise orthogonalised trial wavefunctions for more excited states

• Normal force estimates and geometery optimisation surfaces

• Generalised DMC
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