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e Variational Monte Carlo

e 'Standard’ VMC is P = wz, and failure of CLT is an artifact of this

e Conditions and expressions for Normally distributed estimates in general sampling
e Efficient sampling Monte Carlo implemented - not sampling from P = ¢2

e Estimates for energies, excitation energies, ionisation energies, transition moments

® Results for first row atoms and some molecules
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VMC and General Sampling

Sample with P = 1)* /w and construct an estimate:

— > wibr(Ry)
= S w;

e If both variances exist, Fieller's theorem tells us this is a sample from a Normal distribution with:

[W?*ELdR o 1 [ ¢*/wdR [ wi?(Er — p)?dR
f¢2dR ’ r U‘ ¢2dR]2

/’L:

e \We can estimate the variance:

e 52 # (sample variance) /1

e These equations do not follow from the usual (univariate) Central Limit Theorem
e Zero Variance Principle is still valid - for exact ) = 7 = 0

— The error is controlled if the bivariate CLT is valid and (w) # 0

Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)
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When is it Normal ?
For standard sampling P = 92 (w = 1)
e Normal for standard sampling and total energy (P o 1/334)
e Not Normal for standard sampling used with correlated sampling, forces, and many other estimates
e Different choices of P (equivalently w) are possible
e Changes computational cost: flops for evaluating P
e Changes distribution of random errors
e Failure of CLT from singularities in averaged quantities on the nodal surface
For some P (equivalently w) the variance is infinite, and CLT is invalid

— Goal is to improve efficiency and reinstate the CLT where it is invalid for standard sampling
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Why is Normality so important ?

We want Normally distributed estimates, from a general form of the Central Limit Theorem

If the distribution the estimates are drawn from is not normal then it is a Stable Law :

109
/f i S(2,0,1,0;0) |
= | |
A
10_5 1 1 1 1
1072 10° 10*

2z

e Normal distribution and an example Stable law

e Probability that a sample fall outside of central interval size 2x

e Width parameter is representative of error for Normal, not for Stable
e \Width parameter is estimateable for Normal - sample standard error

e Width parameter is not estimateable for Stable - sample standard error is unrelated
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Efficient sampling in VMC
e Draw position vectors from P = |D1|* + | D5|* 2, no Jastrow, Backflow
— Zero on coalescence planes only, non-zero on rest of nodal surface
e Perform Metropolis accept/reject with P, and use w = 1) /P

e Using r samples, the Bivariate CLT, and Fiellers theorem provides the Normal estimate

E,, — > wil(Ry) 2 _ T S w?(EL(Ry) — Etot)2
e T (S

° (wEL, w) has no singularities and is bounded = all moments exist = distribution is Normal

%Trail JR and Maezono R, JCP (2010)
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Efficient sampling in VMC
Optimisation and estimation of total energy:
e All-electron
e First row atoms + some diatomic molecules
e Numerical orbitals from ATSP2K and 2DHF (MCSCF and HF)
e Jastrow, Backflow, and 5 — 86 CSFs

® 48 h desktop time/system

e 1 for Final estimate:monitor estimate:optimisation » = 9000 : 150 :
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Efficient sampling in VMC
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e Improved results for less computational effort
e For a given error 5 — 35 X faster than standard sampling
e Surfaces for energy optimisation are Normal

e Do we need anisotropic Jastrow/Backflow ?

LiF CNCONO
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Distribution of more general estimates
What is the distribution for more complex estimates ?
Example: Energy differences

AR JUiEdR [ ¢3EdR
Y[R [43dR

e Sample with P = | D;|? + | D3|* (no nodal surface, only coalescence planes)

Z wi By _ Z wo by

Est [AEtot] = Z w Z W
_ 2%
S, Ss

e Elements in sums S,, are correlated only when in same ‘time slots’
= Multivariate CLT is true
= Each S,, is Normal

—> Correlation between S,, and S,,, is linear
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Algebra for sums of random variables
What is the distribution of

5255 — 5154

AEtot — S 53 , Sn — ZXn<Z>
1

with parameters expressed in terms of the estimateable
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Algebra for sums of random variables : Sums

Adding sums of the random variables, trivial to show that:

e Distribution is Normal

E[S1+So] = r(p+ p2)
Var([S;+Ss] = r(Ci +2.C12 + Cy)
Cov|[S; + 52,53 +S4] = r(Ciz+ Ciy+ Coz + Coy)

— Allthe S; + S5 are Normal

— Correlation between any S; + Si and S; + S, is linear
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Algebra for sums of random variables : Quotients

Quotients of sums of the random variables, Fiellers theorem provides:

e Distribution is Normal

S
E[22] = K2
S1 H1
(S, ] 11 2
Var —2 = 5 022—2&012+(&) 011
S TG fh fh

e No expression for correlation of different quotients
So,

S; + S
S3+ S,

is Normal and parameters are estimateable
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Algebra for sums of random variables : Products

Products of sums of the random variables:
e What is the bivariate distribution of (5152, S3S4) ?

e Derive co-moments and compare with bivariate Normal....define AX; (i) = X1(2) — g

A<5152> — 51.52 - E [5152]
- Z AX1 (D) AXo(f) + 1 [ AXa () + A4 (i)] — rC1

7

e Co-moments are defined by (i, , = E [A(S5152)™.A(S354)"]

Hmn = E

(Z AXi())AX(5) +7 ) [ AXo (i) + p2AX4 (8)] — TCH)

1] 7

X <Z AX3(1) AXy(g) + TZ (13 AX4(7) + paAX3(4)] — 7"034>

ij i
e Multiply out and count equivalent terms

e Pick out the dominant r terms.
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Algebra for sums of random variables : Products

Powers of  in each term after multiplication:

e 274 order part: Powers pq, ¢; from equivalence, none from prefactor
e 15" order part: Powers ps, g2 from equivalence, ps, ¢» from prefactor
e 0! order part: Powers ps, q3 from equivalence, ps, g3 from prefactor
e Multiplication gives p1 +p2 +p3s =m,q1 +q2 + g3 = n

e Count powers of 7 from prefactors [r], and from sums (7)

— Terms have powers of r:
[P ()P [r]P2 () P2 P (L)P2 [ () @ [r] 2 () 2 [r |2 (1) E .

But Expectations are zero if any index is unique:

E[AX (7). AXo(7)- AX3(k) - -] = E[AX,(7)] .[E[AX2(7).AX5(F) -

= 0

e Overcounting due to including zero expectations values

]
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Algebra for sums of random variables : Products

Count only terms with no unique indices:

pmtn)He2ta) 2 1] for (py + q) even
pmt Pt et D2 11 for (py 4 ¢o) odd

=> In large 7 limit p5 + g2 = m + n terms dominate (p; = p3 = q¢1 = g3 = 0)

= In large 7 limit the co-moments are same as those for sums:

(Z (111 AXo(7) + Mzﬁxl(i)o

7

X <Z [MgAX4(i)+M4AX3(i)]> ]

7

E [A(Slsg)mA(Sgs4)n] == 7,,m+nE
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Algebra for sums of random variables : Products

e In large 7 limit (S;S9, S3S4) is bivariate Normal with

E[S:Sy] = 72 pia i
Var(SiSs] = 1 (uiCa + 211 p12Cha + p5C11)
000[5152, 5354] = 7”3(,“1#3024 + p1p0aCoz + piop13C1y + pioftaChs)

— We have rules for obtaining the distribution of combinations of sums of random variables (that are

Normal)
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Energy differences

E E
e [AB,] = S-S

553 -S54
N S:S,
Etot — ? - #
M1 M3
r—l _ >wi(E —)* 2Zw1w2(E1 — ) (Ey —Ty) > wi( By — Tiy)?

_|_
r > wi) > wi] [3 ws) > ws)”
Sufficient conditions for this estimate to be Normal are
e All moments exist

e All means in the denominator are non-zero

e At least one mean in each product on numerator is non-zero
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Carbon atom excitation energies

e Calculation as for GS (Multideterminant and numerical orbitals from MCSCF ~ 300 parameters)
® Fiot [QSHL} — Lot [SP ]

e Lowest two eigenstates for each Term

e Inversion symmetry conserved by Jastrow and Backflow

e Term approximately conserved by introduction of Jastrow and Backflow

e Energy minimisation approximately valid for lowest two energies for each Term

o Sample with P = D, [*T'L]* + D, *$*'L]* + D, BP)” + D, PP
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Carbon atom excitation energies
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e Grey: experimental Spectroscopic values 4= 'chemical accuracy’
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Carbon atom excitation energies
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e Grey: experimental Spectroscopic values == 'chemical accuracy’

e 48 energy difference estimates for each excitation
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Error in Carbon atom excitation energies
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e Cl results used for allocating transitions to lines

e Cl| AS and orbitals chosen empirically to reproduce spectrosopy
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Error in Carbon atom excitation energies
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e Chemical accuracy from VMC + efficient sampling
e NOT spectroscopic accuracy

e Estimate of difference not difference of estimates

e Correlation reduces error by 10 — 70%
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lonization energies

e How do we deal with changes in electron number?

Eion — En_En—l
[U3EdR, [ v3EydR,
JtdR, [ ¥3dR,

e Sampled P,(R,,) = D;(n)? + Dy(n)?

e For estimating £,,_1 ignore one 3d sample vector,so R,, =& R,,_1

e Distribution of (ngQ, ’LU2> given by integrating F,, analytically
Pn—l = /Dl (n)2 —+ Dg(n)ngrn

— [ 01(5)-Col1m) + 6alra) Co(2em) -+ 01(5)-CaL, ) + () Cal2m) + .. P,

- [Cl<1, n)2 + Ol<2, n)2 + .. ] + [02(1, n)Q + Cg<2, n)2 + .. ]
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lonization energies

e Provides distributions of (w; E'1, w1, we Ey, ws) in terms of weights

wl(Rn) — w%(Rn)/Pn(Rn)
wa(Rn1) = ¢5(Rn1)/Poo1(Ry1)

e P, is zero on coalescence planes only
e P, 1 is zero on coalescence planes only

e All sums are Normal and linearly correlated — Normal estimate
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lonization energies

e First row neutral atoms and ions

e Orbitals from same source as before

e Jastrow/Backflow and computational cost as before

e Optimise neutral atom and ion seperately, with energy minimisation

e Estimate energy difference/error as for excitation energies
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lonization energies
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e Experimental ionization energies

e VMC estimated energy difference
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Error in lonization energies
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e Close but not chemical accuracy
e Maybe we need T/Q excitations ?

e Correlation reduces error by 0 — 40%
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Transition moments

Spectroscopic line widths characterised by transition dipole moments

3

Ao = 5AF 3 |(GolRItm)F

with sum over total angular momentum eigenstates.

Not done yet ... start with estimates for transition dipole moments:

tie = [(¢] Z ri[1)2)]?

e Sample using P = D1 (1)? + Dy(1)? + D1(2)% + Dy(2)?
e Get an error estimate from random variable algebra

e Not zero variance...
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Transition moments

Estimate:

ti = ‘<¢1|Zri|¢2>2

[ ia(zr + ..+ dR} [ da(ys + ..+ yn dR} [ oz + ...+ zn)de
f%de%

e Define weights wy = ¥3 /P, wy = 13/ P
e Analyse as before ...

S% +S% 4 S2
S,.S5

Est [tlg] =

e Normally distributed with estimateable mean and variance:

o Wy
Hals
?“,LLZZLLLEVCLTEH] = [4,&%011 + 4#%022 + 4#%033 -+ 8,LL1,LL2012 -+ 8,LL1,LL3013 -+ 8,LL2,LL3023]

—2t19 [2p1p5Cha + 20005C4 + 2p305Cs4 + 201 114Ch5 + 2p0p04Cos + 2p3114C55)
-2
+1y [15Cs + 2p1ap15Cas5 + 15 Cs5]

e Replace (s and 1's with unbiased estimates

Paaoe 29



t12 (a.u.)

0.4

0.3

0.2

0.1

Transition moments

o * * * o * * o . *

3P01D61Dolse 5501POIP€3DO3D€3S€ 3503F01F05Pe

e Many are non-normal and zero from symmetry considerations...
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Transition moments
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® ... SO we drop them

e Random error ~ 1%
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Conclusions

e Normal errors can be reintroduced

e More computationally efficient than standard sampling

e Optimisation is on a Normal surface, unlike standard sampling

e Distribution of random error can be derived for general estimates and sampling
Normal and efficient estimates implemented for:

e Total energies

e Energy differences and lonization energies

e Transition moments
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Next?

® Spectroscopic line widths

e Electron affinities

e Optimise orthogonalised trial wavefunctions for more excited states
e Normal force estimates and geometery optimisation surfaces

e Generalised DMC
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