Some Estimates in Variational Quantum Monte Carlo

J.R. Trail and R. Maezono

School of Information Science, JAIST,
Nomi, Ishikawa 923-1292, Japan

July 2009

- Variational Monte Carlo
- 'Standard' VMC is $P=\psi^{2}$, and failure of CLT is an artifact of this
- Conditions and expressions for Normally distributed estimates in general sampling
- Efficient sampling Monte Carlo implemented - not sampling from $P=\psi^{2}$
- Estimates for energies, excitation energies, ionisation energies, transition moments
- Results for first row atoms and some molecules

VMC and General Sampling

Sample with $P=\psi^{2} / w$ and construct an estimate:

$$
\bar{\mu}=\frac{\sum w_{i} E_{L}\left(\mathbf{R}_{i}\right)}{\sum w_{i}}
$$

- If both variances exist, Fieller's theorem tells us this is a sample from a Normal distribution with:

$$
\mu=\frac{\int \psi^{2} E_{L} d \mathbf{R}}{\int \psi^{2} d \mathbf{R}}, \quad \sigma^{2}=\frac{1}{r} \frac{\int \psi^{2} / w d \mathbf{R} \int w \psi^{2}\left(E_{L}-\mu\right)^{2} d \mathbf{R}}{\left[\int \psi^{2} d \mathbf{R}\right]^{2}}
$$

- We can estimate the variance:

$$
\bar{\sigma}^{2}=\frac{r}{r-1} \frac{\sum w_{i}^{2}\left(E_{L}\left(\mathbf{R}_{i}\right)-\bar{\mu}\right)^{2}}{\left(\sum w_{i}\right)^{2}}
$$

- $\bar{\sigma}^{2} \neq($ sample variance $) / r$
- These equations do not follow from the usual (univariate) Central Limit Theorem
- Zero Variance Principle is still valid - for exact $\psi \Rightarrow \bar{\sigma}=0$
\rightarrow The error is controlled if the bivariate CLT is valid and $\langle w\rangle \neq 0$
Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)

When is it Normal?

For standard sampling $P=\psi^{2}(w=1)$

- Normal for standard sampling and total energy $\left(P \propto 1 / x^{4}\right)$
- Not Normal for standard sampling used with correlated sampling, forces, and many other estimates
- Different choices of P (equivalently w) are possible
- Changes computational cost: flops for evaluating P
- Changes distribution of random errors
- Failure of CLT from singularities in averaged quantities on the nodal surface

For some P (equivalently w) the variance is infinite, and CLT is invalid
\rightarrow Goal is to improve efficiency and reinstate the CLT where it is invalid for standard sampling

Why is Normality so important?

We want Normally distributed estimates, from a general form of the Central Limit Theorem
If the distribution the estimates are drawn from is not normal then it is a Stable Law :

- Normal distribution and an example Stable law
- Probability that a sample fall outside of central interval size $2 x$
- Width parameter is representative of error for Normal, not for Stable
- Width parameter is estimateable for Normal - sample standard error
- Width parameter is not estimateable for Stable - sample standard error is unrelated

Efficient sampling in VMC

- Draw position vectors from $P=\left|D_{1}\right|^{2}+\left|D_{2}\right|^{2}$ a, no Jastrow, Backflow
\rightarrow Zero on coalescence planes only, non-zero on rest of nodal surface
- Perform Metropolis accept/reject with P, and use $w=\psi^{2} / P$
- Using r samples, the Bivariate CLT, and Fiellers theorem provides the Normal estimate

$$
\bar{E}_{t o t}=\frac{\sum w_{i} E_{L}\left(\mathbf{R}_{i}\right)}{\sum w_{i}} \quad, \quad \bar{\sigma}^{2}=\frac{r}{r-1} \frac{\sum w_{i}^{2}\left(E_{L}\left(\mathbf{R}_{i}\right)-\bar{E}_{t o t}\right)^{2}}{\left(\sum w_{i}\right)^{2}}
$$

- $\left(w E_{L}, w\right)$ has no singularities and is bounded \Rightarrow all moments exist \Rightarrow distribution is Normal
${ }^{\text {a }}$ Trail JR and Maezono R, JCP (2010)

Efficient sampling in VMC

Optimisation and estimation of total energy:

- All-electron
- First row atoms + some diatomic molecules
- Numerical orbitals from ATSP2K and 2DHF (MCSCF and HF)
- Jastrow, Backflow, and 5-86 CSFs
- 48 h desktop time/system
- r for Final estimate:monitor estimate:optimisation $r=9000: 150: 1$

Efficient sampling in VMC

- Improved results for less computational effort
- For a given error $5-35 \times$ faster than standard sampling
- Surfaces for energy optimisation are Normal
- Do we need anisotropic Jastrow/Backflow ?

Distribution of more general estimates

What is the distribution for more complex estimates ?

Example: Energy differences

$$
\Delta E_{t o t}=\frac{\int \psi_{1}^{2} E_{1} d \mathbf{R}}{\int \psi_{1}^{2} d \mathbf{R}}-\frac{\int \psi_{2}^{2} E_{2} d \mathbf{R}}{\int \psi_{2}^{2} d \mathbf{R}}
$$

- Sample with $P=\left|D_{1}\right|^{2}+\left|D_{2}\right|^{2}$ (no nodal surface, only coalescence planes)

$$
\begin{aligned}
\operatorname{Est}\left[\Delta E_{t o t}\right] & =\frac{\sum w_{1} E_{1}}{\sum w_{1}}-\frac{\sum w_{2} E_{2}}{\sum w_{2}} \\
& =\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}-\frac{\mathrm{S}_{4}}{\mathrm{~S}_{3}}
\end{aligned}
$$

- Elements in sums S_{n} are correlated only when in same 'time slots'
\Rightarrow Multivariate CLT is true
\Rightarrow Each S_{n} is Normal
\Rightarrow Correlation between S_{n} and S_{m} is linear

Algebra for sums of random variables

What is the distribution of

$$
\Delta \mathrm{E}_{t o t}=\frac{\mathrm{S}_{2} \mathrm{~S}_{3}-\mathrm{S}_{1} \mathrm{~S}_{4}}{\mathrm{~S}_{1} \mathrm{~S}_{3}}, \quad \mathrm{~S}_{n}=\sum_{i} X_{n}(i)
$$

with parameters expressed in terms of the estimateable

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{X}_{n}(i)\right] & =\mu_{n} \\
\operatorname{Var}\left[\mathrm{X}_{n}(i)\right] & =C_{n n} \\
\operatorname{Cov}\left[\mathrm{X}_{m}(i), \mathrm{X}_{n}(j)\right] & =C_{n m} \delta_{i, j}
\end{aligned}
$$

Algebra for sums of random variables: Sums

Adding sums of the random variables, trivial to show that:

- Distribution is Normal

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{S}_{1}+\mathrm{S}_{2}\right] & =r\left(\mu_{1}+\mu_{2}\right) \\
\operatorname{Var}\left[\mathrm{S}_{1}+\mathrm{S}_{2}\right] & =r\left(C_{11}+2 . C_{12}+C_{22}\right) \\
\operatorname{Cov}\left[\mathrm{S}_{1}+\mathrm{S}_{2}, \mathrm{~S}_{3}+\mathrm{S}_{4}\right] & =r\left(C_{13}+C_{14}+C_{23}+C_{24}\right)
\end{aligned}
$$

\rightarrow All the $\mathrm{S}_{1}+\mathrm{S}_{2}$ are Normal
\rightarrow Correlation between any $S_{j}+S_{k}$ and $S_{l}+S_{m}$ is linear

Algebra for sums of random variables: Quotients

Quotients of sums of the random variables, Fiellers theorem provides:

- Distribution is Normal

$$
\begin{aligned}
\mathbb{E}\left[\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}\right] & =\frac{\mu_{2}}{\mu_{1}} \\
\operatorname{Var}\left[\frac{\mathrm{~S}_{2}}{\mathrm{~S}_{1}}\right] & =\frac{1}{r} \frac{1}{\mu_{1}^{2}}\left[C_{22}-2 \frac{\mu_{2}}{\mu_{1}} C_{12}+\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2} C_{11}\right]
\end{aligned}
$$

- No expression for correlation of different quotients

So,

$$
\frac{S_{1}+S_{2}}{S_{3}+S_{4}}
$$

is Normal and parameters are estimateable

Algebra for sums of random variables: Products

Products of sums of the random variables:

- What is the bivariate distribution of $\left(\mathrm{S}_{1} \mathrm{~S}_{2}, \mathrm{~S}_{3} \mathrm{~S}_{4}\right)$?
- Derive co-moments and compare with bivariate Normal....define $\Delta \mathrm{X}_{1}(i)=\mathrm{X}_{1}(i)-\mu_{1}$

$$
\begin{aligned}
\Delta\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right) & =\mathrm{S}_{1} \cdot \mathrm{~S}_{2}-\mathbb{E}\left[\mathrm{S}_{1} \cdot \mathrm{~S}_{2}\right] \\
& =\sum_{i j} \Delta \mathrm{X}_{1}(i) \Delta \mathrm{X}_{2}(j)+r \sum_{i}\left[\mu_{1} \Delta \mathrm{X}_{2}(i)+\mu_{2} \Delta \mathrm{X}_{1}(i)\right]-r C_{12}
\end{aligned}
$$

- Co-moments are defined by $\mu_{m, n}=\mathbb{E}\left[\Delta\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right)^{m} . \Delta\left(\mathrm{S}_{3} \mathrm{~S}_{4}\right)^{n}\right]$

$$
\begin{aligned}
\mu_{m, n}= & \mathbb{E}\left[\left(\sum_{i j} \Delta \mathbf{X}_{1}(i) \Delta \mathbf{X}_{2}(j)+r \sum_{i}\left[\mu_{1} \Delta \mathbf{X}_{2}(i)+\mu_{2} \Delta \mathbf{X}_{1}(i)\right]-r C_{12}\right)^{m}\right. \\
& \left.\times\left(\sum_{i j} \Delta \mathbf{X}_{3}(i) \Delta \mathbf{X}_{4}(j)+r \sum_{i}\left(\mu_{3} \Delta \mathbf{X}_{4}(i)+\mu_{4} \Delta \mathbf{X}_{3}(i)\right]-r C_{34}\right)^{n}\right]
\end{aligned}
$$

- Multiply out and count equivalent terms
- Pick out the dominant r terms.

Algebra for sums of random variables: Products

Powers of r in each term after multiplication:

- $2^{\text {nd }}$ order part: Powers p_{1}, q_{1} from equivalence, none from prefactor
- $1^{\text {st }}$ order part: Powers p_{2}, q_{2} from equivalence, p_{2}, q_{2} from prefactor
- $0^{\text {th }}$ order part: Powers p_{3}, q_{3} from equivalence, p_{3}, q_{3} from prefactor
- Multiplication gives $p_{1}+p_{2}+p_{3}=m, q_{1}+q_{2}+q_{3}=n$
- Count powers of r from prefactors $[r]$, and from sums (r)
\Rightarrow Terms have powers of r :

$$
[1]^{p_{1}}(r)^{p_{1}}[r]^{p_{2}}(r)^{p_{2}}[r]^{p_{3}}(1)^{p_{3}} \cdot[1]^{q_{1}}(r)^{q_{1}}[r]^{q_{2}}(r)^{q_{2}}[r]^{q_{3}}(1)^{q_{3}} \mathbb{E}[\ldots]
$$

But Expectations are zero if any index is unique:

$$
\begin{aligned}
\mathbb{E}\left[\Delta \mathrm{X}_{1}(i) \cdot \Delta \mathrm{X}_{2}(j) \cdot \Delta \mathrm{X}_{3}(k) \cdots\right] & =\mathbb{E}\left[\Delta \mathrm{X}_{1}(i)\right] \cdot \mathbb{E}\left[\Delta \mathrm{X}_{2}(j) \cdot \Delta \mathrm{X}_{3}(k) \cdots\right] \\
& =0
\end{aligned}
$$

- Overcounting due to including zero expectations values

Algebra for sums of random variables: Products

Count only terms with no unique indices:

$$
\begin{array}{rc}
r^{(m+n)+\left(p_{2}+q_{2}\right) / 2} \mathbb{E}[\ldots] & \text { for }\left(p_{2}+q_{2}\right) \text { even } \\
r^{(m+n)+\left(p_{2}+q_{2}+1\right) / 2} \mathbb{E}[\ldots] & \text { for }\left(p_{2}+q_{2}\right) \text { odd }
\end{array}
$$

\Rightarrow In large r limit $p_{2}+q_{2}=m+n$ terms dominate $\left(p_{1}=p_{3}=q_{1}=q_{3}=0\right)$
\Rightarrow In large r limit the co-moments are same as those for sums:

$$
\left.\left.\begin{array}{rl}
\mathbb{E}\left[\Delta\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right)^{m} \cdot \Delta\left(\mathrm{~S}_{3} \mathrm{~S}_{4}\right)^{n}\right]=r^{m+n} & \mathbb{E}
\end{array}\right]\left(\sum_{i}\left[\mu_{1} \Delta \mathrm{X}_{2}(i)+\mu_{2} \Delta \mathrm{X}_{1}(i)\right]\right)^{m}, ~\left(\sum_{i}\left[\mu_{3} \Delta \mathrm{X}_{4}(i)+\mu_{4} \Delta \mathrm{X}_{3}(i)\right]\right)^{n}\right]
$$

Algebra for sums of random variables: Products

- In large r limit $\left(\mathrm{S}_{1} \mathrm{~S}_{2}, \mathrm{~S}_{3} \mathrm{~S}_{4}\right)$ is bivariate Normal with

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{S}_{1} \mathrm{~S}_{2}\right] & =r^{2} \mu_{1} \cdot \mu_{2} \\
\operatorname{Var}\left[\mathrm{~S}_{1} \mathrm{~S}_{2}\right] & =r^{3}\left(\mu_{1}^{2} C_{22}+2 \mu_{1} \mu_{2} C_{12}+\mu_{2}^{2} C_{11}\right) \\
\operatorname{Cov}\left[\mathrm{S}_{1} \mathrm{~S}_{2}, \mathrm{~S}_{3} \mathrm{~S}_{4}\right] & =r^{3}\left(\mu_{1} \mu_{3} C_{24}+\mu_{1} \mu_{4} C_{23}+\mu_{2} \mu_{3} C_{14}+\mu_{2} \mu_{4} C_{13}\right)
\end{aligned}
$$

\rightarrow We have rules for obtaining the distribution of combinations of sums of random variables (that are Normal)

Energy differences

$$
\begin{aligned}
\operatorname{Est}\left[\Delta E_{t o t}\right] & =\frac{\sum w_{1} E_{1}}{\sum w_{1}}-\frac{\sum w_{2} E_{2}}{\sum w_{2}} \\
& =\frac{\mathrm{S}_{2} \mathrm{~S}_{3}-\mathrm{S}_{1} \mathrm{~S}_{4}}{\mathrm{~S}_{1} \mathrm{~S}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\overline{\Delta E}_{t o t} & =\frac{\bar{\mu}_{2}}{\bar{\mu}_{1}}-\frac{\bar{\mu}_{4}}{\bar{\mu}_{3}} \\
\frac{r-1}{r} \bar{\sigma}^{2} & =\frac{\sum w_{1}^{2}\left(E_{1}-\bar{\mu}_{1}\right)^{2}}{\left[\sum w_{1}\right]^{2}}-2 \frac{\sum w_{1} w_{2}\left(E_{1}-\bar{\mu}_{1}\right)\left(E_{2}-\bar{\mu}_{2}\right)}{\left[\sum w_{1}\right]\left[\sum w_{2}\right]}+\frac{\sum w_{2}^{2}\left(E_{2}-\bar{\mu}_{2}\right)^{2}}{\left[\sum w_{2}\right]^{2}}
\end{aligned}
$$

Sufficient conditions for this estimate to be Normal are

- All moments exist
- All means in the denominator are non-zero
- At least one mean in each product on numerator is non-zero

Carbon atom excitation energies

- Calculation as for GS (Multideterminant and numerical orbitals from MCSCF ~300 parameters)
- $E_{t o t}\left[{ }^{2 S+1} L\right]-E_{t o t}\left[{ }^{3} P\right]$
- Lowest two eigenstates for each Term
- Inversion symmetry conserved by Jastrow and Backflow
- Term approximately conserved by introduction of Jastrow and Backflow
- Energy minimisation approximately valid for lowest two energies for each Term
- Sample with $P=D_{1}\left[{ }^{2 S+1} L\right]^{2}+D_{2}\left[{ }^{2 S+1} L\right]^{2}+D_{1}\left[{ }^{3} P\right]^{2}+D_{2}\left[{ }^{3} P\right]^{2}$

Carbon atom excitation energies

- $\mathrm{C}^{2 S+1} L \rightarrow \mathrm{C}^{3} P$
- Grey: experimental Spectroscopic values \pm 'chemical accuracy'

Carbon atom excitation energies

- $\mathrm{C}^{2 S+1} L \rightarrow \mathrm{C}^{3} P$
- Grey: experimental Spectroscopic values \pm 'chemical accuracy'
- 48 energy difference estimates for each excitation

Error in Carbon atom excitation energies

- Cl results used for allocating transitions to lines
- CI AS and orbitals chosen empirically to reproduce spectrosopy

Error in Carbon atom excitation energies

- Chemical accuracy from VMC + efficient sampling
- NOT spectroscopic accuracy
- Estimate of difference not difference of estimates
- Correlation reduces error by $10-70 \%$

Ionization energies

- How do we deal with changes in electron number?

$$
\begin{aligned}
E_{i o n} & =E_{n}-E_{n-1} \\
& =\frac{\int \psi_{1}^{2} E_{1} d \mathbf{R}_{n}}{\int \psi_{1}^{2} d \mathbf{R}_{n}}-\frac{\int \psi_{2}^{2} E_{2} d \mathbf{R}_{n-1}}{\int \psi_{2}^{2} d \mathbf{R}_{n-1}}
\end{aligned}
$$

- Sampled $P_{n}\left(\mathbf{R}_{n}\right)=D_{1}(n)^{2}+D_{2}(n)^{2}$
- For estimating E_{n-1} ignore one $3 d$ sample vector, so $\mathbf{R}_{n} \rightarrow \mathbf{R}_{n-1}$
- Distribution of ($w_{2} E_{2}, w_{2}$) given by integrating P_{n} analytically

$$
\begin{aligned}
P_{n-1} & =\int D_{1}(n)^{2}+D_{2}(n)^{2} d^{3} \mathbf{r}_{n} \\
& =\int\left[\phi_{1}\left(\mathbf{r}_{n}\right) \cdot C_{1}(1, n)+\phi_{2}\left(\mathbf{r}_{n}\right) \cdot C_{1}(2, n)+\ldots\right]^{2}+\left[\phi_{1}\left(\mathbf{r}_{n}\right) \cdot C_{2}(1, n)+\phi_{2}\left(\mathbf{r}_{n}\right) \cdot C_{2}(2, n)+\ldots\right]^{2} d^{3} \mathbf{r}_{n} \\
& =\left[C_{1}(1, n)^{2}+C_{1}(2, n)^{2}+\ldots\right]+\left[C_{2}(1, n)^{2}+C_{2}(2, n)^{2}+\ldots\right]
\end{aligned}
$$

Ionization energies

- Provides distributions of $\left(w_{1} E_{1}, w_{1}, w_{2} E_{2}, w_{2}\right)$ in terms of weights

$$
\begin{aligned}
w_{1}\left(\mathbf{R}_{n}\right) & =\psi_{1}^{2}\left(\mathbf{R}_{n}\right) / P_{n}\left(\mathbf{R}_{n}\right) \\
w_{2}\left(\mathbf{R}_{n-1}\right) & =\psi_{2}^{2}\left(\mathbf{R}_{n-1}\right) / P_{n-1}\left(\mathbf{R}_{n-1}\right)
\end{aligned}
$$

- P_{n} is zero on coalescence planes only
- P_{n-1} is zero on coalescence planes only
- All sums are Normal and linearly correlated \rightarrow Normal estimate

Ionization energies

- First row neutral atoms and ions
- Orbitals from same source as before
- Jastrow/Backflow and computational cost as before
- Optimise neutral atom and ion seperately, with energy minimisation
- Estimate energy difference/error as for excitation energies

Ionization energies

- Experimental ionization energies
- VMC estimated energy difference

Error in lonization energies

- Close but not chemical accuracy
- Maybe we need T/Q excitations ?
- Correlation reduces error by $0-40 \%$

Transition moments

Spectroscopic line widths characterised by transition dipole moments

$$
\left.\Delta_{\omega}=\frac{3}{2} \Delta E \sum_{m}\left|\left\langle\psi_{0}\right| \mathbf{R}\right| \psi_{m}\right\rangle\left.\right|^{2}
$$

with sum over total angular momentum eigenstates.
Not done yet ... start with estimates for transition dipole moments:

$$
\left.t_{12}=\left|\left\langle\psi_{1}\right| \sum_{i} \mathbf{r}_{i}\right| \psi_{2}\right\rangle\left.\right|^{2}
$$

- Sample using $P=D_{1}(1)^{2}+D_{2}(1)^{2}+D_{1}(2)^{2}+D_{2}(2)^{2}$
- Get an error estimate from random variable algebra
- Not zero variance...

Transition moments

Estimate:

$$
\begin{aligned}
t_{12} & \left.=\left|\left\langle\psi_{1}\right| \sum \mathbf{r}_{i}\right| \psi_{2}\right\rangle\left.\right|^{2} \\
& =\frac{\left[\int \psi_{1} \psi_{2}\left(x_{1}+\ldots+x_{n}\right) d \mathbf{R}\right]^{2}+\left[\int \psi_{1} \psi_{2}\left(y_{1}+\ldots+y_{n}\right) d \mathbf{R}\right]^{2}+\left[\int \psi_{1} \psi_{2}\left(z_{1}+\ldots+z_{n}\right) d \mathbf{R}\right]^{2}}{\int \psi_{1}^{2} d \mathbf{R} \int \psi_{2}^{2} d \mathbf{R}}
\end{aligned}
$$

- Define weights $w_{1}=\psi_{1}^{2} / P, w_{2}=\psi_{2}^{2} / P$
- Analyse as before ...

$$
\operatorname{Est}\left[t_{12}\right]=\frac{\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}+\mathrm{S}_{3}^{2}}{\mathrm{~S}_{4} \cdot \mathrm{~S}_{5}}
$$

- Normally distributed with estimateable mean and variance:

$$
\begin{aligned}
\bar{t}_{12}= & \frac{\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}}{\mu_{4} \mu_{5}} \\
r \mu_{4}^{2} \mu_{5}^{2} \operatorname{Var}\left[\bar{t}_{12}\right]= & {\left[4 \mu_{1}^{2} C_{11}+4 \mu_{2}^{2} C_{22}+4 \mu_{3}^{2} C_{33}+8 \mu_{1} \mu_{2} C_{12}+8 \mu_{1} \mu_{3} C_{13}+8 \mu_{2} \mu_{3} C_{23}\right] } \\
& -2 \bar{t}_{12}\left[2 \mu_{1} \mu_{5} C_{14}+2 \mu_{2} \mu_{5} C_{24}+2 \mu_{3} \mu_{5} C_{34}+2 \mu_{1} \mu_{4} C_{15}+2 \mu_{2} \mu_{4} C_{25}+2 \mu_{3} \mu_{4} C_{35}\right] \\
& +\bar{t}_{12}^{2}\left[\mu_{5}^{2} C_{44}+2 \mu_{4} \mu_{5} C_{45}+\mu_{4}^{2} C_{55}\right]
\end{aligned}
$$

- Replace C 's and μ 's with unbiased estimates

Transition moments

- Many are non-normal and zero from symmetry considerations...

Transition moments

- ... so we drop them
- Random error $\sim 1 \%$

Conclusions

- Normal errors can be reintroduced
- More computationally efficient than standard sampling
- Optimisation is on a Normal surface, unlike standard sampling
- Distribution of random error can be derived for general estimates and sampling

Normal and efficient estimates implemented for:

- Total energies
- Energy differences and lonization energies
- Transition moments

Next?

- Spectroscopic line widths
- Electron affinities
- Optimise orthogonalised trial wavefunctions for more excited states
- Normal force estimates and geometery optimisation surfaces
- Generalised DMC

