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OUTLINE

Bird’s eye view on core-electron spectroscopies.

A new theoretical method for calculating electron

spectra in solids: QMMC.

Guided by my own experience I have chosen two

applications:

Auger spectra of SiO2 nanoclusters: chemical

recognition.

Growth and electronic properties of

carbon-based materials.
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Spectroscopies

Tools for investigating properties of matter by the
interaction with projectiles.

Which matter? XPS, Auger and EELS spectra can
be recorded on atoms, molecules and solid samples.

Which projectiles? Impinging particles may be
photons, electrons, neutrons, ions.....
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Spectroscopies

The totality of physical and chemical processes
involve the scattering or the transfer of "particles".

Scattering of particles and dynamics are connected:
the former is a very powerful tool for
investigating and originating the latter.
The energy and time domain are linked by a FT.
The e/de-xcitation are inherently many-body
phenomena.

Chemical elements recognition:
Information on the electronic structure of
materials.
Quantitative determination of the impurities in a
sample.
Adsorption of molecules on surfaces.
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Spectroscopies

Elastic scattering:Ei = Ef andqi = qf , Ei

continuous

Inelastic scattering:Ei 6= Ef andqi 6= qf , Ef

discrete

Mechanisms: ionization, electron excitations,
plasmons, ... – p. 4



Basics for e− spectroscopy

A device for producing the electronic or photonic
beam, at typical energies between 1 and 30 keV
necessary for the primary ionization; the same
energy range is needed in EELS to travel well inside
the material.

A target constituted by a solid sample or by a
supersonic beam of atoms or molecules;

A spectrometer or analyzer, that collects the
electrons emitted by the target after the collision.
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Microscopic Observables

the differential cross section is defined by the
probability to observe a scattered particle into a
solid angle unit if the target is irradiated by a flux of
one particle by surface unit

dσ

dΩ
=

Scattered flux/Unit solid angle

Incident flux/Unit of surface

the double differential cross sectiond
2σ

dΩdE is the
differential cross section within a unit energy range
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Macroscopic Observables

Absorption:I = I0 exp(−αx) whereα depends on the
sample (imaginary part of the dielectric constantǫ)

  

I0

I

x
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Micro-Macro Connection

Connection between the micro-world in linear response (band structures

and wavefunctions), and the macroscopic optical constants(absorption

coefficient (ABS) and energy loss (ELF )) is:

ELF = −Im

(

1

ǫav

)

ABS = Im (ǫav) .

α is related to the macroscopic frequency-dependent dielectric functionǫav

ǫav gives a connection between macroscopic theory, based on Maxwell’s

equations, and the long wavelength limit of the microscopicdielectric

function (G′ = q + G):

ǫ
G,G

′ (q,ω)= 8π2

Ω
1

q2

P

v,c,G
|<c,G+q| expiq·r |v,G>|2δ(ǫc,G+q−ǫv,G−ω)
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Processes by photon impact

hν + AB −→ e−core + AB+∗ (A)

hν + AB −→ AB∗ (B)

AB+∗ −→ e−Auger + AB++∗ (A
′

)

AB∗ −→ e− + AB+∗ (B
′

)
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(B) PRIMARY PHOTO-EXCITATION

– p. 9



Processes by photon impact

hν + AB −→ e−core + AB+∗ (A)

hν + AB −→ AB∗ (B)

AB+∗ −→ e−Auger + AB++∗ (A
′

)

AB∗ −→ e− + AB+∗ (B
′

)

(C) NORMAL AUGER EMISSION
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Processes by photon impact

hν + AB −→ e−core + AB+∗ (A)

hν + AB −→ AB∗ (B)

AB+∗ −→ e−Auger + AB++∗ (A
′

)

AB∗ −→ e− + AB+∗ (B
′

)

(D) AUTOIONIZATION
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Photon-matter interactions

collisions

XPS resonant

electron emission

Direct processes: the spectrum is a fingerprint of the
material=⇒ can be used to investigate chemical bonds,
adsorption via core-level shifts...
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Photon-matter interactions

collisions

XPS resonant

electron emission

Resonant collisions: formation of a metastable system
embedded in the continuum of higher charge state=⇒
can be used to investigate electron dynamics, many-body
effects, chemical environment...
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Photon-matter interactions

collisions

XPS resonant

electron emission

Electron decay times can commensurate with
molecular vibrational period: importance of nuclear
dynamics in polyatomic systems.
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Photon-matter interactions

collisions

XPS resonant

electron emission

The escaping electrons may suffer further inelastic
collisions with surrounding electronic cloud and
collective charge motion.

– p. 10



Photon-matter interactions
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CO XPS-C K shell spectra

BE = hν − Ekin, Γ = 0.054 eV, γ0 = 0.35 eV
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CO XPS-O K shell spectra

BE = hν − Ekin, Γ = 0.065 eV, γ0 = 0.35 eV
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CO Auger C K-LL spectra

EAuger = EL + EL′ − EK
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CO Auger O K-LL spectra

EAuger = EL + EL′ − EK
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Atomic Oxygen XPS K-shell spectra

BE is a function of the chemical environment of atoms
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Atomic O Auger K-LL spectra

AugerEkin is a function of the chemical environment of
atoms
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EELS

EEL spectroscopy is of primary importance in the
characterization of materials.

It is characterized by many features: multiple
scattering, single electron excitations and anisotropy
effects.

Inelastic and elastic processes can be identified via
the energy loss function.

The most relevant is the plasmon peak energy.

ε(k, ω), dielectric function = response of conduction
electrons to the electric field (ω = frequency) due to
electrons (k = wave vector) passing through a solid
and losing energy in it.
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EELS

The e− passing through can be represented by:

ρ(r, t) = −e δ(r − vt)

r andv = position and speed of e− at timet.

The electric potential generated in the medium is

ε(k, ω)∇2ϕ(r, t) = −4π ρ(r, t) = 4π e δ(r − vt) .

The EEL per unit path lengthdx for the interaction
with E generated by the electrons passing through
the solid is given by

−dW

dx
=

e

v
v · E .
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EELS

From the Poisson equation in the Fourier space:

−dW
dx = e2

π2 v

∫

dk
∫ ∞

0
dω ω Im[ 1

ε(k,ω) ]
δ(k ·v +ω)

k2

The electron inverse inelastic mean free path is:

λ−1
inel =

m e2

π ~2 T

∫ Wmax

0

dW

∫ ~ k+

~ k−

dk

k
Im

[

1

ε(k, ω)

]

and the differential inelastic scattering cross section

dσinel
dW

=
1

N π T a0

∫ k+

k−

dk

k
Im

[

1

ε(k, ω)

]

N = target density,a0 = Bohr radius. – p. 19



Dielectric function (Drude model)

The electric displacementD is

D=E+ 4πP= (1 + 4πχ)E= εE

where the polarization density of the material is
P = e n ξ , wheren = electron density,ξ = electron
displacement

For elastically bound electrons

m ξ̈ + βξ̇ + k ξ = e E(t)

whereβ = m γ, kn = m ω2
n = elastic constant,m =

electron mass,ωn = natural frequencies andγ =
damping constant due to collisions, irradiation....
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Dielectric function

Finally, for finite electron moment

ε(k, ω) = 1 − ω2
p

∑

n

fn
ω2 − ω2

n − ω2
k − iγnω

.

whereωp =
√

4π n e2

m is the plasma frequency

One can try an ab-initio calculation for the
energy-dependent dielectric function.
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Secondary Electrons Spectroscopies

LEED=Low Energy Electron Diffraction (elastic
scatteringE = E0)
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Secondary Electrons Spectroscopies

EELS=Electron Energy Loss Spectroscopy (inelastic
scattering due to plasmonsE0 − 50 eV ≤ E ≤ E0)
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Secondary Electrons Spectroscopies

HREELS=High Resolution Electron Energy Loss
Spectroscopy (inelastic scattering due to phonons
E0 − 0.1 eV ≤ E ≤ E0)
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Secondary Electrons Spectroscopies

AES=Auger Electron Spectroscopy
(50 eV ≤ E ≤ E0 − 50 eV )
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Secondary Electrons Spectroscopies

SEM=Scanning Electron Microscopy (true secondary
electrons originating from cascade processes
0 ≤ E ≤ 50 eV )
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Problems...

Main issues in calculations of electron spectra for
condensed matter applications:

inclusion of the correlation: many interacting
electrons causes unfavorable scaling:

exp(N) in general

N 6 in CISD
N 3 in QMC, DFT

assessment of the band-like part of the spectra
including shake phenomena

extrinsic electron energy loss: escaping electrons
may suffer inelastic collisions with surrounding
electronic cloud and collective charge motion.
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What can QMMC do?

Computational tool for investigating properties of
matter (from atoms to solids) by the interaction with
projectiles (photons, electrons and ions).

QMMC provides an extension of Fano’s resonant
multichannel scattering theory to condensed matter
applications at cost comparable to that of molecules.

QMMC calculates photoemission and non radiative
decay spectra through:

Ab-initio: intrinsic features of a system
(electronic structure, e/de-xcitation including
accurate treatment of many-body effects)
Monte Carlo: extrinsic electron energy loss
(inelastic and plasmon scattering energy loss)

– p. 24



The QMMC Method

The problem: from first principles, solve the scattering

problem including the correlation effects and the proper

boundary conditions, predict the cross sections and show

how they compare with experimental measurements.

– p. 25



The QMMC Method

The problem: from first principles, solve the scattering

problem including the correlation effects and the proper

boundary conditions, predict the cross sections and show

how they compare with experimental measurements.

Splitting the problem into three parts:

System=cluster+environment

Electronic structure and continuum wavefunction

calculations: peak position, intensity and lifetime of the

resonance.

Superimpose electron energy loss using a Monte Carlo
technique.
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Electronic structure calculation

Splitting the problem:

MD+HF+

CI (HGF)
LS+Interchannel

+SESP

Extraction of the

observables

Molecular dynamics produces:

relaxed geometrical structure.

Electronic structure calculations:

HGF basis set.

HF: All electron mean field treatment of the e-e interaction.

CI: inclusion of the exchange-correlation.

produce:partial occupancies, band structure, access to excited states
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The QMMC method

Cluster choice is a trade-off between computational cost and accuracy:

Ntot = Nb +Nm +Nv = total number of HGF

Nb = total number of bi-occupied after HF

Nm = total number of mono-occupied orbitals after HF

Nv = total number of virtual orbitals after HF

Nc = Nbc
+Nvc

+Nmc
= total number of cluster orbitals
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The QMMC method

The cluster functional space (Nc) is not orthogonal to neither bi-occupied

(Nb) nor virtual (including bonding orbitals) (Nm +Nv) functional space

of the all system (N ) after HF: one needs to orthogonalize it to lower the

computational cost.

We separately diagonalize the bioccupied and virtual orbitals spaces by

projecting into the cluster functional space through:

Pb =

Nbc
∑

ij=1

|gi > S−1
ij < gj | Pv =

Nvc
∑

ij=1

|gi > S−1
ij < gj |

where

S−1
ij =< gi|gj >

This rotation makes no change in energy and total wavefunction

Eigenvalue = 0 (1) means outside (inside) the cluster functional space,

intermediate values means bonding orbitals
– p. 27



The QMMC method

HGF System HGF Cluster HGF Environment

Total (Initial) 369 89 280

Bi-occupied orbitals 160 42 118

Mono-occupied orbitals 1 0 1

Virtuals+bonds orbitals 208 77 131
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The QMMC method

The multichannel theory of scattering aims to find positive energy solutions of the

many-body Hamiltonian:

(Ĥ − E)Ψ−
α,ǫ = 0

Ĥ(1, .., N) =
N

∑

i=1

[T̂ (i) + V̂ en(i)] +
1

2

N
∑

i 6=j

v̂(i, j) = Ĥ0 +
N

∑

i 6=j

v̂(i, j)

where:

T̂ (i) = −1

2
∇2

i ; V̂ en(i) =
∑

µ

1

|ri − Rµ|
, v̂(i, j) =

1

|ri − rj |

For a multichannel process scattering wf has to include correlation among bound

electrons in the final decay states of the system and between the double ion and

the electron in the continuum.
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The QMMC method

Scattering wavefunction of the electron ejected in the continuum in the long range

limit:

lim
rN→∞

Ψ−
α,ǫ(1, 2, ..., N) ∝ |Θα(1, 2, ..., N − 1) >

[

|σα(sN ) ψ−
ǫα

(rN) >
]

+ |
∑

β

Θβ(1, 2, .., N − 1) >

[

σβ(sN )
e−iθβ

(2π)3/2 rN

]

S(ǫβ , ǫα)

where

|σαψ
−
ǫα
> = escaping electron spin-orbital

θβ = phase shift

S(ǫβ , ǫα) = scattering amplitudes coupling different channels
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The QMMC method

Traditional way to solve with ingoing boundary conditions relies on the Static

Exchange Approximation (SEA), which splits the scatteringprocess in two steps:

HF for bound states

F̂ (b)
α θα

i (r) = εiθ
α
i (r)

F̂ (b)
α = T̂ + V̂en(r) +

N−2
∑

j=1

[

a
(b)
αj Ĵ

(α)
j (r) − c

(b)
αj K̂

(α)
j (r)

]

HF for continuum states

F̂ (c)
α |ψ−

αk(r) >= ǫα|ψ−
αk((r)) >

F̂
(c)
α = T̂ + V̂en(r) +

∑

j

[

a
(c)
αj Ĵ

(α)
j (r) − c

(c)
αj K̂

(α)
j (r)

]

= T̂ + V̂α(r)
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The QMMC method

Lippmann-Schwinger equation projected onto a model space:

ψ−
αk(r) = φk(r) + Ĝ−

0 (ǫα)T̂α(E)φk(r) =

φk(r) +
∑

lj

< gl|T̂α|gj >< gj |φk > Ĝ−
0 (ǫα)|gl >

T̂α = V̂P
α + V̂P

α G
−
0 T̂α

G−
0 , free single-particle Green’s function at energyǫα = E − Eα andV̂α,

screened projected Coulomb potential.

The structure of the scattering wavefunction in the asymptotic region suggests that

the spaceG representing the scattering wavefunction in the interaction region can

be chosen as:

Ψαkα
(1, ..N) =

√
N Â

[

|Θα(1, ..., N − 1) σα(sN ) > |ψ~kα
(rN ) >

]

whereA = antisymmetrizer – p. 28



The QMMC method

Interchannel interaction

< Ψβ~pβ
(1, .., N)| Ĥ − E |Ψα~kα

(1, .., N) >= (2π)3δ(~k − ~p)δαβ(
k2

2
+ Eα)

+ < η~kα; α|V̂ en
π δαβ + Ŵαβ

π |η~pβ ; β >

produces:

decay probabilities correctly distributed among the open channels.

electron-hole post-collisional interactions.

– p. 28



The QMMC method

Electronic structure calculations using Gaussians

scale as the6th power of the system size we need

ENERGY SPLIT TO TREAT
EXTENDED SYSTEMS!!

Step 1More intense transitions are selected smaller Hamiltonian to

diagonalize.

Step 2: Hole delocalization and band-effects enters by splitting previous

interchannel states in a number of transitions close in energy and maximally

overlapping with states selected in step 1

– p. 28



Physical observables

Within the frozen phonon approximation, for a photon beam polarized along theλ

direction, first order perturbation theory gives for the Auger cross section

∂σ0→α

∂~k∂~p
(~k, ~p;ω, λ) = (

2πω

c
)
| < 0|Ôλ|Ψ−

α,ǫα
> |2

E − Er − iΓ2
Γαδ(E0+~ω−(Eα+

k2 + p2

2
))

where

Γ =
∑

β Γβ = 2π
∑

β |M−
β (ǫβ , E)|2

M−
β (ǫβ , E) =< Φ|H − E|χ−

β,ǫβ
>

|Φ > = resonant core-hole intermediate state
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Numerical issues...
S-wave scattering, comparison between hydrogenic (continuous line) and model

(dashed line) solutions using s-type 50 tempered Gaussians
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Numerical issues...
S-wave scattering, comparison between hydrogenic (continuous line) and model

(dashed line) solutions using s-type 50 tempered Gaussians
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Numerical issues...
Comparison of exact hydrogenic (continuous-black line) and the model solution at

0.01 a.u. for different Gaussian numbers.
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Scaling performances

Concern is not only about the basis set but about the number ofopen

channels as well.

Gaussian basis set scales linearly with the number of atoms.

Channels number scales as the second power

Scattering potential needs a larger number of functions, approximately

scaling linearly with the number of channels.

Calculation of the interchannel potentials scales cubiclywith the number of

channels

Symmetry may help in the calculation of the electronic correlation

If symmetry halves the spanned functional space, Hamiltonian matrix cubic

scaling inversions (Green operator) are eightfold reduced.
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Monte Carlo energy loss

Ab-initio Auger spectrum is the initial energy distribution of escaping

electrons.

The energy loss is a stochastic process.

The step-length∆s is given by∆s = −λ ln(µ1) , where

µ1 is a random number uniformly distributed in[0, 1].

λ is the electron mean free path:

λ(E) =
1

N [σel(E) + σinel(E)]
,

N is the number of SiO2 molecules per unit volume

σel(E) is total elastic scattering cross section

σinel(E) is the total inelastic scattering cross section

E = kinetic energy of an incident electron

– p. 34



Monte Carlo energy loss

σel(E) and dσel(E,ω)
dω are calculated via Relativistic Partial Wave Expansion

method

σinel(E) and dσinel(E,ω)
dω are calculated via the Ritchie theory.

dσinel(E,ω)

dω
=

me2

2π~2NE
Im

[ −1

ε(ω)

]

S
( ω

E

)

where

ω is the energy loss

The functionS

S(x) = (1 − x) ln
4

x
− 7

4
x+ x3/2 − 33

32
x2 .

ε(ω) is the long-wavelenght limit of the dielectric function.
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Monte Carlo energy loss

If ξ is a random variable in(a, b) with a given probability densityp(x), µ a

variable uniformly distributed in(0, 1), the values ofξ are related to those

of µ by:
∫ ξ

a

p(x)dx = µ

Uniform distribution in(a, b):

pη(x) =
1

b− a

If µ is a variable uniformly distributed in(0, 1), thenη:

µ =

∫ η

a

pη(x)dx = µ =

∫ η

a

dx

b− a

η = a+ µ(b− a)

and its expected value – p. 36



Monte Carlo energy loss

Before each collision, a random numberµ2 uniformly distributed in[0, 1] is

generated and compared withqinel = σinel/(σinel + σel) .

If µ2 ≤ qinel collision is inelastic and energy lossW is computed via:

µ4 =
1

σinel

∫ W

0

dσinel

dω
dω ,

where

µ4 is a random number uniformly distributed in[0, 1]:

– p. 37



Monte Carlo energy loss

Before each collision, a random numberµ2 uniformly distributed in[0, 1] is

generated and compared withqinel = σinel/(σinel + σel) .

If µ2 ≥ qinel collision is elastic and the polar scattering angle,θ, is selected

such that the random numberµ3 uniformly distributed in the range[0, 1]:

µ3 =
1

σel

∫ θ

0

dσel

dΩ
2π sinϑ dϑ ,

where

µ3 is uniformly distributed in[0, 1]

Ω is the solid angle of scattering
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Logical flow in QMMC

– p. 38



O K − LL Auger spectra in SiO2

Quantum Mechanical theoretical data (continuous line),
the Monte Carlo results (dashed line) and the
experimental data (point line).
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O/Si K − LL Auger spectra in SiO2

O K-LL S2 Ekin Γα Si K-LL S2 Ekin Γα
2s − 2s (0) 458.75 0.570 2s − 2s (0) 1499.99 0.335

2s − 2p (0) 473.4 0.511 2s − 2p (0) 1544.66 0.860

2s − 2p (0) 477.41 0.653 2s − 2p (1) 1563.35 0.226

2s − 2p (0) 477.99 0.624 2p − 2p (0) 1598.19 0.362

2s − 2p (1) 481.64 0.156 2p − 2p (0) 1603.72 0.998

2s − 2p (1) 484.96 0.182 2p − 2p (0) 1603.73 1

2s − 2p (1) 485.73 0.190 2p − 2p (0) 1661.11 0.051

2p − 2p (0) 493.94 0.670 2p − 2p (0) 1714.15 0.039

2p − 2p (0) 497.89 0.801 2p − 2p (0) 1716.26 0.404

2p − 2p (0) 498.74 0.862

2p − 2p (0) 500.28 0.829 – p. 40



Si K − LL Auger spectra in SiO2

Quantum mechanical calculation (continuous line),
Monte Carlo results for different SiO2 layer thickness: 5
nm (dashed line), 10 nm (spaced point line), 15 nm
(point-dashed line), 20 nm (small-dashed line), 25 nm
(point line).
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Tunable band-gap in qfs graphene

The use of graphene in semiconductor devices requires a bandgap in order

to switch the conductivity between an on and off state.

Size quantization of about 1 nm induces band gaps of â1
41 eV in graphene

nanoribbons, CNT and quantum dots.

However, in the case of nanotubes, the preparation of samples with ohmic

contacts is still challenging. Similarly, in the case of nanoribbons, the

electronic properties are determined by the edges, rendering this approach

technologically very demanding.

An alternative strategy is the chemical functionalizationof graphene which

induces bandgaps and can even be reversed.
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Tunable band-gap in qfs graphene

Hydrogenated amorphous carbon (a-C:H) has an optical gap increasing

with the hydrogen content. Fully hydrogenated graphene, also referred to as

graphane, has been suggested recently as an insulator with abandgap of 3.5

eV.

Hydrogenated graphene on SiC was investigated and found at Hcoverages

of ∼ 1%, suggesting an electron localization as the mechanism responsible

for the MIT.

However, graphene on SiC is intrinsically heavily electrondoped (EF is

∼ 0.5 eV above the Dirac point) and as such is not the model system tobe

compared to the transport experiments on cleaved graphene.

– p. 42



Growth model of graphene
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Propene C1s and EELS spectra
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Growth model of graphene

C-Ni = 1.87 Å, C-H = 1.098 Å,Ĉ −H = 109.4◦

C-Ni3 = 1.75 Å, C-H = 1.11 Å,Ĉ −Ni = 91.5◦

– p. 45



Growth model of graphene
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Growth model of graphene

40 a.u., 160 a.u (kinetic energy and charge cut-offs), forces < 0.001 eV Å per atom

LDA: C-Ni = 2.08 Å, C-Ni = 2.11 Å, C-C = 1.43 Å, Ni-Ni = 2.49 Å

– p. 47



Tunable band-gap in qfs graphene

By ARPES we find a tunable gap in q.f.s. graphene on Au induced by

hydrogenation (MIT).

Local rehybridization from sp2 to sp3 is observed by XPS and EXAFS

allowing a determination of the chemisorbed hydrogen amount.

Hydrogen induced gap formation is completely reversible byannealing

without damaging the graphene.

The size of the gap can be controlled via hydrogen loading andreaches

∼ 1.0 eV for a hydrogen coverage of 8%.

Hydrogenation of graphene gives access to tunable electronic and optical

properties and thereby provides a model system to study hydrogen storage

in carbon materials.
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XPS: hν= 380 eV, res = 50 meV

– p. 49



Theoretical results

[19s(=10sNi+7sC+2sH)+15p=9pNi+5pC+1pH)+6d(=5dNi+1dC)]

System top(exp) hollow(exp) 2nd floor

Ni(111)-graphene(lda) 284.8 (284.7) 284.89 (284.8)

Ni(111)-CH (wf)3 288.23

Ni(111)-CH (wf ) 288.29

Ni(111)-graph-CH3(wf) 290.24

System C1(exp) C2(exp) C3(exp)

H-graphene/Au 284.2(284.33) 283.9(283.59) 284.7(284.61)
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ARPES: hν = 40.8 eV, AR=0.3◦

Figure 2: (a) ARPES spectrum of graphene/Au along with a 3NN TB calculation and (b) the
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XPS and ARPES results
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First conclusions

C1s core level shift of 0.5 eV towards lower binding energy upon Au

intercalation in between the graphene/Ni(111) interface,resulting in a

substantial reduction of the substrate interaction.

This is in accordance with our calculations that predict a reduction of the

cohesive energy per atom by 0.4 eV and an increase of the

graphene-substrate distance by 1 Å.

The exposure of graphene to atomic hydrogen induces the formation of C-H

bonds resulting in a local sp3 hybridization. This is directly observed in

XPS by the appearance of two additional C1s peaks, separatedby almost

1eV, originating from the C-H bond and the C atom next to it.

NEXAFS measurements indicate a rehybridization from sp2 to sp3 and the

formation of C-H bonds perpendicular to the graphene layer.
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First conclusions

Most importantly, the ARPES spectra of hydrogenated graphene clearly

show the downshift of theπ bandâs spectral function to lower energies and

also a broadening.

Our calculations support sublattice symmetry breaking as the reason for the

observed changes in the ARPES upon hydrogenation.

Tunability
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Growth model of graphene
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ARPES: hν = 40.8 eV, AR=0.3◦

– p. 55



ARPES again
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Deep acceptor level in H-graphene
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PDOS
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Second conclusions

Hydrogenated graphene has an acceptor level and the electron concen-

tration in graphene can be controlled via the H/C ratio.

DFT calculations of the DOS show this band to be largely composed from

H 1s orbitals.

An estimation of the Mott criterion and the calculation of thetypical DOS

suggests that the impurity band is stable against randomness in the H

chemisorption and remains extended.

The narrow acceptor level found in our ARPES data is ex- pected to give

rise to metallic conduction when the chem- ical potential istuned to cross

the impurity band. The small bandwidth of this band makes it astrongly

corre- lated band, dominantly derived from hydrogenic s bands.

Electron doping of H-graphene could represent a route to form metallic

bands from Hydrogen 1s states for high-Tc superconductors in alternative to

solid hydrogen which requires extremely high pressures.
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Take home conclusions

Electron spectra simulations in condensed matter systems can

be performed: theory and numerics of a method for calculating

spectra in systems at any level of aggregation.

The method is general, the main feature being the calculation

of the wf in the continuum.

I showed application to XPS and Auger spectra to molecules

and solids (CO, SiO2, graphene).

Advantages of these methods are:

Accurate inclusion of correlation effects.

Very well scalable with system size (toward biophysics

systems).

Inclusion of the features of the incident beam – p. 60
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