
Trial wave functions

•How does backflow compare with other nodal improvement methods (orbital 
optimization, multideterminant expansion) for benzene energies?

Benzene dimers

•How does backflow change the binding energy of benzene dimer?
•For the geometries that we consider, what is the lowest energy benzene dimer geometry?
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The Benzene Dimer

•Motivation:  Prototypical system for weak π-π interactions 
•Problem:  Computationally expensive methods and large basis sets needed to 

accurately describe weak van der Waals interactions
•Previous QMC and quantum chemical calculations give a range of energies 

and ground state geometries

Face to face T-shaped Parallel displaced



Previous calculations 

Binding energies [kcal/mol]

*Calculations report De experiments report Do. Park & Lee calculate a zpe of -0.3 kcal/mol for the T-Shaped dimer, 
and -0.2 kcal/mol for the PD geometry.
** darker blue color indicates MP2 geometries

Method Authors Face to Face Parallel 
Displaced T-Shaped

CCSD(T) Park & Lee 2006 3.03 2.67
Tsuzuki et al. 2002 1.48* 2.48 2.46
Sinnokrot et al. 2004 1.81 2.78** 2.74
Hobza et al. 1996 2.01 2.17
Jurecka et al. 2006 2.73 2.74

SAPT Podeszwa et al. 2006 2.42 2.74
DMC Sorella et al. 2007 0.5 2.2(3)

Diedrich et al. 2005 3.6(4) 3.0(4)
Korth et al. 2008 1.7(4) 3.8(4)

Experiment Grover et al. 1987 2.4(4)*
Krause et al. 1991 1.6(4)*
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• Small binding energies
• Computationally demanding calculations
• Unclear which method is most accurate



Parameters of Slater Trial Wavefunction
• B3LYP orbitals from Gaussian03
• Hartree-Fock pseudopotential and triple-zeta basis
[Burkatzki, Filippi,Dolg]
• Geometries from Tsuzuki et al.

Quantum Monte Carlo Calculations
• CASINO QMC code [Needs, Towler et al.]
• Variance minimization of Jastrow and backflow parameters
• Select optimal cutoffs from single benzene

• Casula “tmoves” scheme used for CASINO DMC calculations

Calculation Details

     Jastrow [a.u.]     Jastrow [a.u.]        VMC [Ha]       VMC [Ha]
e-n e-e Energy Variance

5 4 -75.083(5) 1.37(2)

12 9 -75.203(3) 1.147(9)



CASINO vs. CHAMP
• Single benzene molecule

• Both have optimized Jastrow factors

• Hartree Fock orbitals           
• CASINO orbitals from Gaussian
• CHAMP orbitals from Gamess

Wavefunction Benchmarking
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DMC timestep convergence (Slater Jastrow)

         Timestep (1/Ha)
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We expect a timestep of 0.01 1/Ha to give binding 
energies better than 1 mHa



Trial wavefunction optimization (single benzene)
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Energy improvement from a Slater Jastrow wavefunction
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Energy improvement from a Slater Jastrow wavefunction

Backflow improves
 the wavefunction the most
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Trial
Wavefunction

parallel displaced T-shaped

Slater-Jastrow 1.6(3) kcal/mol 2.8(4) kcal/mol

Slater-Jastrow-
Backflow 3.1(6) kcal/mol 2.8(7) kcal/mol

DMC benzene dimerization energies



Binding energies [kcal/mol]

** darker blue color indicates MP2 geometries

Method Authors Face to Face Parallel 
Displaced T-Shaped

CCSD(T) Park & Lee 2006 3.03 2.67
Tsuzuki et al. 2002 1.48* 2.48 2.46
Sinnokrot et al. 2004 1.81 2.78** 2.74
Hobza et al. 1996 2.01 2.17
Jurecka et al. 2006 2.73 2.74

SAPT Podeszwa et al. 2006 2.42 2.74
DMC Sorella et al. 2007 0.5 2.2(3)

Diedrich et al. 2005 3.6(4) 3.0(4)
Korth et al. 2008 1.7(4) 3.8(4)
Our results:  SJ 1.6(3) 2.8(4)
Our results:  SJB 3.1(6) 2.8(7)

Experiment Grover et al. 1987 2.4(4)
Krause et al. 1991 1.6(4)

DMC benzene dimerization energies
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Trial wave functions
•Backflow more efficient than a multi-determinant expansion or orbital optimization in 

improving the wavefunction
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