#### Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\*

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

#### email contact: kas382@cornell.edu

### **Trial wave functions**

• How does backflow compare with other nodal improvement methods (orbital optimization, multideterminant expansion) for benzene energies?

### **Benzene dimers**

- How does backflow change the binding energy of benzene dimer?
- For the geometries that we consider, what is the lowest energy benzene dimer geometry?

# **The Benzene Dimer**

- Motivation: Prototypical system for weak  $\pi$ - $\pi$  interactions
- Problem: Computationally expensive methods and large basis sets needed to accurately describe weak van der Waals interactions
- Previous QMC and quantum chemical calculations give a range of energies and ground state geometries



# **Previous calculations**

# **Binding energies [kcal/mol]**

| Method     | Authors                                              | Face to Face                        | Parallel<br>Displaced       | <b>T-Shaped</b>    |
|------------|------------------------------------------------------|-------------------------------------|-----------------------------|--------------------|
| CCSD(T)    | Park & Lee 2006                                      |                                     | 3.03                        | 2.67               |
|            | Tsuzuki et al. 2002                                  | 1.48*                               | 2.48                        | 2.46               |
|            | Sinnokrot et al. 2004                                | 1.81                                | 2.78**                      | 2.74               |
|            | Hobza et al. 1996                                    |                                     | 2.01                        | 2.17               |
|            | Jurecka et al. 2006                                  |                                     | 2.73                        | 2.74               |
| SAPT       | Podeszwa et al. 2006                                 | 2.42                                | 2.74                        |                    |
| DMC        | Sorella et al. 2007                                  | 0.5                                 | 2.2(3)                      |                    |
|            | Diedrich et al. 2005                                 |                                     | 3.6(4)                      | 3.0(4)             |
|            | Korth et al. 2008                                    |                                     | 1.7(4)                      | 3.8(4)             |
| Experiment | t Grover et al. 1987                                 |                                     |                             | 2.4(4)*            |
|            | Krause et al. 1991                                   |                                     |                             | 1.6(4)*            |
| *Calcu     | Induse et al. 1991<br>Identified for the PD geometry | port D <sub>o</sub> . Park & Lee ca | alculate a zpe of -0.3 kcal | /mol for the T-Sha |

\*\* darker blue color indicates MP2 geometries

# **Previous calculations**

| Binding | energies | [kcal/mol] |
|---------|----------|------------|
|---------|----------|------------|

| Method           | Authors                                                                         | Face to Face                        | Parallel<br>Displaced        | <b>T-Shaped</b>          |
|------------------|---------------------------------------------------------------------------------|-------------------------------------|------------------------------|--------------------------|
| CCSD(T)          | Park & Lee 2006                                                                 |                                     | 3.03                         | 2.67                     |
|                  | Tsuzuki et al. 2002                                                             | 1.48*                               | 2.48                         | 2.46                     |
|                  | Sinnokrot et al. 2004                                                           | 1.81                                | 2.78**                       | 2.74                     |
|                  | Hobza et al. 1996                                                               |                                     | 2.01                         | 2.17                     |
|                  | Jurecka et al. 2006                                                             |                                     | 2.73                         | 2.74                     |
| SAPT             | Podeszwa et al. 2006                                                            | 2.42                                | 2.74                         |                          |
| DMC              | Sorella et al. 2007                                                             | 0.5                                 | 2.2(3)                       |                          |
|                  | Diedrich et al. 2005                                                            |                                     | 3.6(4)                       | 3.0(4)                   |
|                  | Korth et al. 2008                                                               |                                     | 1.7(4)                       | 3.8(4)                   |
| Experiment       | t Grover et al. 1987                                                            |                                     |                              | 2.4(4)*                  |
|                  | Krause et al. 1991                                                              |                                     |                              | 1.6(4)*                  |
| *Calcu<br>and -0 | lations report D <sub>e</sub> experiments re<br>.2 kcal/mol for the PD geometry | port D <sub>o</sub> . Park & Lee ca | alculate a zpe of -0.3 kcal/ | mol for the T-Shaped dim |

\*\* darker blue color indicates MP2 geometries

# **Previous calculations**

| <b>Binding energies [kcal/mol]</b> |                                                                                                                           |                            |                                                                  |                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Method                             | Authors                                                                                                                   | Face to Face               | Parallel<br>Displaced                                            | <b>T-Shaped</b>                                                                        |
| CCSD(T)                            | Park & Lee 2006                                                                                                           |                            | 3.03                                                             | 2.67                                                                                   |
|                                    | Tsuzuki et al 2002                                                                                                        | 1 48*                      | 2.48                                                             | 2.46                                                                                   |
|                                    | Computation                                                                                                               | ally deman                 | ding calcula                                                     | ations 7                                                                               |
| SAPT<br>DMC                        | Computation<br>Unclear whice<br>Sorella et al. 2007                                                                       | ally deman<br>the method i | ding calcula<br>s most acc                                       | ations 7<br>urate 14                                                                   |
| SAPT<br>DMC                        | Computation<br>Unclear whice<br>Foueszwa et al. 2000<br>Sorella et al. 2005                                               | ally deman<br>the method i | ding calcula<br>s most acc<br>2.74<br>2.2(3)<br>3.6(4)           | ations 7<br>urate 4<br>3.0(4)                                                          |
| SAPT<br>DMC                        | Computation<br>Unclear which<br>Folleszwa et al. 2000<br>Sorella et al. 2007<br>Diedrich et al. 2005<br>Korth et al. 2008 | ally deman<br>the method i | ding calcula<br>s most acc<br>2.74<br>2.2(3)<br>3.6(4)<br>1.7(4) | ations<br>4<br>7<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| SAPT<br>DMC<br>Experimen           | Computation<br>Unclear which<br>Fourse and 2000<br>Sorella et al. 2007<br>Diedrich et al. 2005<br>Korth et al. 2008       | ally deman<br>h method i   | ding calcula<br>s most acc<br>2.74<br>2.2(3)<br>3.6(4)<br>1.7(4) | ations<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7           |

# **Calculation Details**

# **Parameters of Slater Trial Wavefunction**

- B3LYP orbitals from Gaussian03
- Hartree-Fock pseudopotential and triple-zeta basis [Burkatzki, Filippi,Dolg]
- Geometries from Tsuzuki et al.

# **Quantum Monte Carlo Calculations**

- CASINO QMC code [Needs, Towler et al.]
- Variance minimization of Jastrow and backflow parameters
- Select optimal cutoffs from single benzene

| Jastrow | [a.u.] | VMC [Ha]   |          |  |
|---------|--------|------------|----------|--|
| e-n e-e |        | Energy     | Variance |  |
| 5       | 4      | -75.083(5) | I.37(2)  |  |
| 12      | 9      | -75.203(3) | I.I47(9) |  |

• Casula "tmoves" scheme used for CASINO DMC calculations

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
  - CASINO orbitals from Gaussian
  - CHAMP orbitals from Gamess

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
  - CASINO orbitals from Gaussian
  - CHAMP orbitals from Gamess

|                               | CASINO                       |             | CHAMP                      |            |
|-------------------------------|------------------------------|-------------|----------------------------|------------|
|                               | vmc                          | dmc         | vmc                        | dmc        |
| no tmoves                     | -37.637(2)<br>var=0.431(6)   | -37.7076(8) | -37.6342(6)<br>var = 0.507 | -37.711(1) |
| tmoves                        | -37.637(2)<br>var=0.431(6)   | -37.7046(9) |                            |            |
| no tmoves<br>local channel= s | -37.6306(9)<br>var =0.446(4) | -37.7029(4) |                            |            |

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
  - CASINO orbitals from Gaussian
  - CHAMP orbitals from Gamess

|                               | CASINO                       |             | CHAMP                      |            |
|-------------------------------|------------------------------|-------------|----------------------------|------------|
|                               | vmc                          | dmc         | vmc                        | dmc        |
| no tmoves                     | -37.637(2)<br>var=0.431(6)   | -37.7076(8) | -37.6342(6)<br>var = 0.507 | -37.711(1) |
| tmoves                        | -37.637(2)<br>var=0.431(6)   | -37.7046(9) |                            |            |
| no tmoves<br>local channel= s | -37.6306(9)<br>var =0.446(4) | -37.7029(4) |                            |            |

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
  - CASINO orbitals from Gaussian
  - CHAMP orbitals from Gamess

|                               | CASINO                       |             | CHAMP                      |            |
|-------------------------------|------------------------------|-------------|----------------------------|------------|
|                               | vmc                          | dmc         | vmc                        | dmc        |
| no tmoves                     | -37.637(2)<br>var=0.431(6)   | -37.7076(8) | -37.6342(6)<br>var = 0.507 | -37.711(1) |
| tmoves                        | -37.637(2)<br>var=0.431(6)   | -37.7046(9) |                            |            |
| no tmoves<br>local channel= s | -37.6306(9)<br>var =0.446(4) | -37.7029(4) |                            |            |

### **DMC timestep convergence (Slater Jastrow)**



We expect a timestep of 0.01 I/Ha to give binding energies better than I mHa

# **Trial wavefunction optimization (single benzene)**



Backflow most efficiently improves the benzene VMC energy

# **Trial wavefunction optimization (single benzene)**



Backflow most efficiently improves the benzene VMC energy





# **DMC benzene dimerization energies**

| Trial<br>Wavefunction       | parallel displaced | T-shaped        |
|-----------------------------|--------------------|-----------------|
| Slater-Jastrow              | 1.6(3) kcal/mol    | 2.8(4) kcal/mol |
| Slater-Jastrow-<br>Backflow | 3.1(6) kcal/mol    | 2.8(7) kcal/mol |

# **DMC benzene dimerization energies**

| Method     | Authors               | Face to Face | Parallel<br>Displaced | <b>T-Shaped</b> |
|------------|-----------------------|--------------|-----------------------|-----------------|
| CCSD(T)    | Park & Lee 2006       |              | 3.03                  | 2.67            |
|            | Tsuzuki et al. 2002   | 1.48*        | 2.48                  | 2.46            |
|            | Sinnokrot et al. 2004 | 1.81         | 2.78**                | 2.74            |
|            | Hobza et al. 1996     |              | 2.01                  | 2.17            |
|            | Jurecka et al. 2006   |              | 2.73                  | 2.74            |
| SAPT       | Podeszwa et al. 2006  | 2.42         | 2.74                  |                 |
| DMC        | Sorella et al. 2007   | 0.5          | 2.2(3)                |                 |
|            | Diedrich et al. 2005  |              | 3.6(4)                | 3.0(4)          |
|            | Korth et al. 2008     |              | 1.7(4)                | 3.8(4)          |
|            | Our results: SJ       |              | 1.6(3)                | 2.8(4)          |
|            | Our results: SJB      |              | 3.1(6)                | 2.8(7)          |
| Experiment | t Grover et al. 1987  |              |                       | 2.4(4)          |
|            | Krause et al. 1991    |              |                       | 1.6(4)          |

\*\* darker blue color indicates MP2 geometries

#### **Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\***

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

email contact: <u>kas382@cornell.edu</u>

### Conclusions

#### **Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\***

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

email contact: <u>kas382@cornell.edu</u>

# Conclusions

### **The Benzene Dimer**

#### Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\*

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

email contact: <u>kas382@cornell.edu</u>

# Conclusions

### **The Benzene Dimer**

• Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions

#### Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\*

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

#### email contact: <u>kas382@cornell.edu</u>

# Conclusions

# **The Benzene Dimer**

- Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
- Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)

#### Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\*

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

#### email contact: <u>kas382@cornell.edu</u>

# Conclusions

# **The Benzene Dimer**

- Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
- Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
- Backflow appears to increase the binding energy of the parallel displaced benzene dimer

#### Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\*

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

#### email contact: <u>kas382@cornell.edu</u>

# Conclusions

# **The Benzene Dimer**

- Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
- Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
- Backflow appears to increase the binding energy of the parallel displaced benzene dimer

# **Trial wave functions**

#### Kathleen Schwarz\*, Cyrus Umrigar\*\*, Richard Hennig\*\*\*

\*Cornell University Department of Chemistry, \*\*Cornell University Department of Physics, \*\*\*Cornell University Department of Materials Science and Engineering

#### email contact: <u>kas382@cornell.edu</u>

# Conclusions

# **The Benzene Dimer**

- Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
- Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
- Backflow appears to increase the binding energy of the parallel displaced benzene dimer

### **Trial wave functions**

• Backflow more efficient than a multi-determinant expansion or orbital optimization in improving the wavefunction