Pseudopotentials for QMC

Richard Needs

University of Cambridge, UK

QMC in the Apuan Alps, Vallico Sotto, Italy, July 2010

Core-valence partition

Assign orbitals to core or valence

Li: $1s^2$ $2s^1$ Li: $1s^2 2s^1$ Si: $1s^2 2s^2 2p^6$ $3s^2 3p^2$ Fe: $1s^2 2s^2 2p^6 3s^2 3p^6$ $3d^6 4s^2$ Fe: $1s^2 2s^2 2p^6$ $3s^2 3p^6 3d^6 4s^2$

Partition is also in energy and space

Density matrix approach of Acioli and Ceperley

"Pseudopotentials from correlated wave functions" Acioli and Ceperley, J Chem Phys 100, 8169 (1994)

$$\rho(\mathbf{r},\mathbf{r}')=N\int\Psi^*(\mathbf{r},\mathbf{r}_2,\ldots,\mathbf{r}_N)\Psi(\mathbf{r}',\mathbf{r}_2,\ldots,\mathbf{r}_N)\,d\mathbf{r}_2\ldots d\mathbf{r}_N$$

Write in terms of eigenvectors and eigenfunctions of $ho({f r},{f r}')$

$$\rho(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^{\infty} n_i \, \phi_i^*(\mathbf{r}) \phi_i(\mathbf{r}') \quad 0 \le n_i \le 2$$

Norm-conservation

$$\rho(\mathbf{r}, \mathbf{r}') = \rho^{\mathrm{PS}}(\mathbf{r}, \mathbf{r}') \qquad r, r' \ge r_c$$

Need accurate all-electron wave function for atom Helium: $\rho^{PS}(\mathbf{r}, \mathbf{r}')$ only correct when both electrons are outside r_c

Pseudopotentials with local DFT

For valence electrons insist that:

$$\begin{aligned} \epsilon_l^{\rm PS} &= \epsilon_l^{\rm AE} \\ \phi_l^{\rm PS}(r) &= \phi_l^{\rm AE}(r) \quad r > r_c \end{aligned}$$

$$\begin{bmatrix} -\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V^{AE} \end{bmatrix} \phi_l^{AE} = \epsilon_l^{AE}\phi_l^{AE}$$
$$\begin{bmatrix} -\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V_l^{PS} \end{bmatrix} \phi_l^{PS} = \epsilon_l^{PS}\phi_l^{PS}$$

Must therefore have $V_l^{\text{PS}}(r) = V^{\text{AE}}(r)$ $r > r_c$

Use norm conservation and smoothness for $\phi_l^{PS}(r < r_c)$, invert SE for V_l^{PS}

Pseudopotentials within Hartree-Fock theory

Similar to local DFT – with a twist!

Exchange interaction is very long ranged

Inverting the Schrödinger equation in local DFT gives

$$V_l^{\rm PS} \simeq -\frac{Z_{\rm ion}}{r} \qquad r \to \infty$$

but in Hartree-Fock theory get

$$V_l^{\rm PS} \simeq A - \frac{Z_{\rm ion} + B}{r} + \mathcal{O}(r^{-2}) \qquad r \to \infty$$

Trail and Needs, J Chem Phys 122, 014112 (2005)

Total energy not defined for an extended system Can apparently deal with the problem without much loss of accuracy

Pseudopotentials from fitting to excitation energies

Don't need to invert the Schrödinger equation to make a pseudopotential

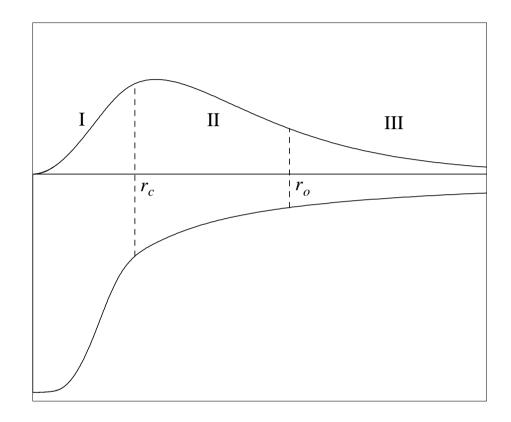
Can fit to excitation energies obtained from:

- (1) Hartree-Fock theory
- (2) A correlated theory
- (3) Experiment

Issue: excitation energies may be very large Lowest excitation energy of H is $1s \rightarrow 2s$ which costs ${\sim}8$ eV Could fit to correlated energies with a perturbing potential

Empirical Pseudopotential I

Lee, Kent, Towler, Needs, and Rajagopal, Phys Rev B 62, 13347 (2000)



$$\phi^{\text{III}}(r) \propto W_{x,l+1/2}\left(\frac{2Z_{\text{ion}}r}{x}\right) \qquad , \qquad x = \frac{Z_{\text{ion}}}{\sqrt{2\epsilon}}$$

 $W\equiv$ Whittaker function of the second kind

Empirical Pseudopotential II

Consider single electrons outside of the core in s, p, or d levels

$$V_{\rm III}^{\rm PS}(r) = -\frac{Z_{\rm ion}}{r}$$

For $r_c > r < r_0$ take

$$V_{\rm II}^{\rm PS}(r) = -\frac{Z_{\rm ion}}{r} - \frac{\alpha}{2r^4}$$

Energy ϵ_l to remove the electron available experimentally for most atoms

Get charge density norms for each orbital from DFT

Make corrections to the energies ϵ_l (roughly -0.05 eV for Si) and norms (roughly 0.002 electrons for Si) to allow for fact that ϵ_l come from 3+ ions

Empirical Pseudopotential III

Integrate Schrödinger equation at energy ϵ_l from r_o to r_c to get $\phi_{II}(r)$

Si atom: $r_{cs} = 1.75$ a.u., $r_{cp} = 1.80$ a.u., $r_{cd} = 2.0$ a.u., $r_0 = 20.17$ a.u.

Invert Schrödinger equation to get $\phi_{\rm I}(r)$ and hence $V_{\rm I}^{\rm PS}(r)$ as in DFT

Gave best results in atomic excitation tests, also good results in recent solid state calculations of silicon in diamond and β -tin structures

Problems? Need a more accurate potential in region II Current level of testing insufficient

Testing HF pseudopotentials

Test two sets of pseudos: Trail and Needs, J Chem Phys 122, 174109 (2005) Burkatzki, Filippi, Dolg, J Chem Phys 126, 234105 (2007)

55 molecules of the G2 set with the CRYSTAL code Atoms: H, Li, Be, C, N, O, F, Na, Si, P, S, Cl Max number of atoms in a molecule = 8 Gaussian basis sets optimised for each molecule Normally 17 basis functions per atom, sometimes have to reduce a bit

Compare spherical atoms from CRYSTAL from integrating HF on a grid: MAD = 0.0012 eV per atom Compare atomisation energies with all-electron HF of O'Neill and Gill Mol Phys 103, 763 (2005) MAD (Trail and Needs) = 0.26 eV per molecule MAD (Burkatzki, Filippi, Dolg) = 0.24 eV per molecule (NB, THESE ARE NOT FINISHED YET)

The molecules are almost all overbound

```
Conclusion !*&(?!+)*(*@!?@:¿ @
```