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Core-valence partition

Assign orbitals to core or valence

Li: 152 | 25!
Li: | 152 2s1
Si: 152 252 2p8 | 352 3p?

Fe: 152 25° 2p° 352 3p° | 3d6 452

Fe: 1s% 252 2p° 382 3p° 3d° 4s2

Partition is also in energy and space



Density matrix approach of Acioli and Ceperley

“Pseudopotentials from correlated wave functions”
Acioli and Ceperley, J Chem Phys 100, 8169 (1994)

p(r,r’) :N/\If*(r,rg,...,rN)\I!(r’,rQ,...,rN)drg...drN

Write in terms of eigenvectors and eigenfunctions of p(r,r’)

p(r, ') =) ni¢i(r)gi(r') 0<m; <2
1=1

Norm-conservation

PS(I‘, r’) r,r >,

p(r,r’) = p

Need accurate all-electron wave function for atom
Helium: pP5(r,r’) only correct when both electrons are outside 7



Pseudopotentials with local DFT

All-electron orbitals ¢:*E(r) eigenvalues ¢*F
Pseudo orbitals PS(r) eigenvalues €]
For valence electrons insist that:
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Must therefore have VIS (r) = VAE(r) 1>,

Use norm conservation and smoothness for ¢} >(r < r.), invert SE for V;'>



Pseudopotentials within Hartree-Fock theory

Similar to local DFT — with a twist!
Exchange interaction is very long ranged

Inverting the Schrodinger equation in local DFT gives

VYZPS ~ _Zion r s 00
.
but in Hartree-Fock theory get
Zion + B _
VS~ A — on ¥ Or™) r—o0
r

Trail and Needs, J Chem Phys 122, 014112 (2005)

Total energy not defined for an extended system
Can apparently deal with the problem without much loss of accuracy



Pseudopotentials from fitting to excitation energies

Don’t need to invert the Schrodinger equation to make a pseudopotential

Can fit to excitation energies obtained from:
(1) Hartree-Fock theory

(2) A correlated theory

(3) Experiment

Issue: excitation energies may be very large
Lowest excitation energy of H is 1s — 2s which costs ~8 eV
Could fit to correlated energies with a perturbing potential



Empirical Pseudopotential |

Lee, Kent, Towler, Needs, and Rajagopal, Phys Rev B 62, 13347 (2000)
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W = Whittaker function of the second kind



Empirical Pseudopotential |l

Consider single electrons outside of the core in s, p, or d levels

7.
VII;IS(?”) = ——=
r
For r. > r < rg take
A Q
VPS r) — — ion
11 ( ) r 2r4

Energy ¢; to remove the electron available experimentally for most atoms
Get charge density norms for each orbital from DFT

Make corrections to the energies €; (roughly -0.05 eV for Si) and norms
(roughly 0.002 electrons for Si) to allow for fact that ¢; come from 3+ ions



Empirical Pseudopotential Il

Integrate Schrodinger equation at energy ¢; from r, to 7. to get ¢ri(r)
Si atom: r.s = 1.75 a.u., e, = 1.80 a.u., reg = 2.0 a.u., o = 20.17 a.u.
Invert Schrodinger equation to get ¢1(r) and hence V;'5(r) as in DFT

Gave best results in atomic excitation tests, also good results in recent
solid state calculations of silicon in diamond and 3-tin structures

Problems? Need a more accurate potential in region I
Current level of testing insufficient



Testing HF pseudopotentials

Test two sets of pseudos:
Trail and Needs, J Chem Phys 122, 174109 (2005)
Burkatzki, Filippi, Dolg, J Chem Phys 126, 234105 (2007)

55 molecules of the G2 set with the CRYSTAL code

Atoms: H, Li, Be, C, N, O, F, Na, Si, P, S, Cl

Max number of atoms in a molecule = 8

Gaussian basis sets optimised for each molecule

Normally 17 basis functions per atom, sometimes have to reduce a bit

Compare spherical atoms from CRYSTAL from integrating HF on a grid:
MAD = 0.0012 eV per atom

Compare atomisation energies with all-electron HF of O'Neill and Gill Mol
Phys 103, 763 (2005)

MAD (Trail and Needs) = 0.26 eV per molecule

MAD (Burkatzki, Filippi, Dolg) = 0.24 eV per molecule

(NB, THESE ARE NOT FINISHED YET)

The molecules are almost all overbound

Conclusion 1*&(?!+)*(*@!70@:; ©
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