TTI10@Valico Sotto, Italy, 24.Jul.09

Weak interactions treated by DMC

Ryo Maezono

rmaezono@mac.com

School of Information Science,

Japan Advanced Institute of Science and Technology, Ishikawa, Japan.

Collaborators

- Dr. Nguyen Thanh Cuong

JAIST --> AIST (Tsukuba/National Institute)

Initial/Trial WF preparations

- Dr. John R. Trail

JAIST

Pseodo potentials

van der Waals Interaction

between

DNA Base Stacking

Background

R. Maezono, H. Watanabe, S. Tanaka, M.D. Towler and R.J. Needs, JPSJ <u>76</u>, 064301 ('07).

FMO-QMC applied several years ago, but (Glycine Trimer) it doesn't work well

$$E_{\text{total}} \approx \sum_{I=1}^{N} E_{I} + \sum_{I=2}^{N} \sum_{J=1}^{I-1} (E_{IJ} - [E_{I} + E_{J}])$$
$$= \sum_{I} E_{IJ} - (N-2) \sum_{I=1}^{N} E_{I}$$

(Error-bar and bias get larger)

 \rightarrow Whole calculation is possible, try it.

Computational Details

- Gaussian 03 software
- All electron
 - HF: 6-31G(d,p) basis set
 - DFT: LDA, PBE-PBE, B3LYP with 6-31G(d,p) basis set
 - MP2: 6-31G(d,p), cc-pVDZ, cc-pVTZ basis sets
- BFD Pseudo-potential with vdz, vtz basis sets
 - HF, DFT (LDA, PBE-PBE, B3LYP)
 - MP2 (only with vtz basis set)

BFD Pseudo potentials

Stacking energy = $E(R)-E(R_0=8)$

Results - All electron

Distance between two A-T Base layers (Å)

Stacking energy = $E(R)-E(R_0=8)$

QMC/LDA trial nodes

TZ and DZ

QMC/GGA trial nodes

LDA & GGA

CO on Cu(111) surface

... Another example of weak interaction nature...

DFT fails to predict correct adsorption site for several transition and nobel metal surfaces.

Discrepancies

J. Feibelman et.al., J. Phys. Chem. B 105 (2001) 4018

XC potentials

Non-local Exchange into account

- HSE correct adsorption site for Cu, Rh but fail for Pt
- **B3LYP** correct adsorption site for Cu, Rh, Pt but not believed

to give proper description for metallic systems

Electronic structure

ΗΟΜΟ-5σ

M. Gajdos et.al., Condens. Matter 16 (2004) 1141

Two channels of interaction

 $\cdot \pi^* - d$ (planer); strong / prefers HOLLOW $\cdot \sigma - d_{(z^2)}$; weak, long-ranged / prefers TOP

XC dependence

HOMO/LUMO GAP underestimated in LDA

 \rightarrow [π^* -d] channel pronounced to give Hollow site abs.

DFT challenges

Difficulty comes from the same origin...

Conventional XC being bad at long-ranged weak interactions (vdW etc.)

--> Some DFT researchers are now trying with

XC designed for vdW.

QMC calculation

- Energy comparison

TOP site is properly predicted to be preferred?

- Charge density

How density is deformed as CO approaching to surface? Comparison between DFT & QMC.

When FN-DMC reverses the result from initial guess DFT what occurs on many-body WF? (corresponding to HOMO-LUMO shift)

Absorption sites

Results so far

Energy (hartree/UnitCell)

DFT for QMC trial WF

DFT with PWSCF code

- A slab model: Cu(111) - $(\sqrt{3} \times \sqrt{3})$ - R30 with 4-layers (12 Cu atoms)

- PBE functional
- Trail-Needs small core pseudo potential

KB ghost --> s-local for Cu d-local for other

- E_{cutoff} = 250 Ry

- 2x2x1 k-mesh (shifted into L-pt)

--> 816 electrons for QMC

Trail-Needs PP

Large Core for Cu: 11 electronsSmall Core for Cu: 17 electrons

E _{cutoff} (Ry)	E _{total} (Ry)		
100	-1020.85296106		
200	-1205.79813236		
300	-1250.80554480		
400	-1260.09948666		
500	-1261.43336365		
600	-1261.50965834		
700	-1261.51931978		
800	-1261.54014445		

E _{cutoff} (Ry)	E _{total} (Ry)		
100	-3569.17561370		
200	-3592.34897908		
300	-3592.39104215		
400	-3592.40725712		
500	-3592.40804109		
600	-3592.40821798		
700	-3592.40834096		
800	-3592.40844810		

Reducing Cutoff

500 Ryd. required for DFT to converge

--> Too large for QMC when converted to blip.

--> 816 electrons for QMC

Reducing Cutoff

QMC calculations

- Reducing cutoff

500 Ryd. required for DFT to converge

--> Too large for QMC feasible...

- T-move problem

Turning off the scheme for stable pop. control.

- HPCF setup

(# of bin files)/(MPI_IO)/(single prec.)

T-move problem

DMC for Cu substrate

Results so far

Energy (hartree/UnitCell)

HPCF setup

PC cluster (100Ry./VMC/2nodes/8cores)

(# of bin files)/(MPI_IO)/(single prec.)

label	Time/block	CPU time	real time	Mem/CPU (MB).
1/F/F	14.3300	683.7300	3037.8542	2451
1/T/F	14.3101	652.3100	5247.8384	2451
2/F/F	62.4399	1168.9800	5050.0791	1225.
2/T/F	62.0800	1370.0499	5585.0464	1225.
8/F/F	74.3298	1975.8499	4694.2241	306.
8/T/F	75.7101	1467.2600	1714.6511	306.
8/T/T	75.0399	1365.8799	1564.9081	153.

- MPI/IO quite effective with proper choice of '# of bin files"

--> # of cores (not # of nodes) in PC cluster case

- Single prec. reduces file capacity but no CPU time.

HPCF setup

Cray XT5 (4nodes/32cores)

(# of bin files)/(MPI_IO)/(single prec.)

label	CPU time	real time	
4/T/F	7236.7598	7237.3755	
32/T/F	37691.1875	46593.4492.	(100Ryd.

Another test with 300 Ryd.

label	CPU time	real time
4/F/T	1625.4000	1674.2101
4/T/T	1775.5400	1822.2231.

- MPI/IO not so effective in such well-designed HPCF.
- Proper choice of '# of bin files' = (# of nodes)

Future possible works

- CO on Ni-surface

How induced spin polarization changes as CO approaches.

DFT calculation

DFT with PWSCF code

- A slab model: Cu(111) - $(\sqrt{3} \times \sqrt{3}) - R30$

with 4-layers (12 Cu atoms)

- PBE functional
- PAW pseudopotential
- E_{cutoff} = 150 Ry
- 14×14 ×1 k-mesh

PAW-DFT results

Adsorption energy (eV) $E_{adsorption} = E_{CO-Cu(111)} - (E_{CO} + E_{Cu(111)})$

Cu(111)	atop	bridge	hcp-hollow	fcc-hollow
4-Layers	-0.583 eV	-0.637 eV	-0.711 eV	-0.714 eV
7-Layers	-0.618 eV	-0.670 eV		

(% Experiments : Atop -0.425 eV, -0.46 eV, -0.49 eV)

M. Gajdos et.al., Condens. Matter 16 (2004) 1141

- FCC-hollow predicted.
- Not enough converge; 4-layer to 7-layer but doesn't matter to the prediction
- Smaller difference between Atop & hollow than that of previous works --> PAW works well