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Benchmark calculations

experimental atomization energies of 55 small molecules (G2
set)
previous DMC benchmark calculations by J. C. Grossman and
Nemec/Towler/Needs
Grossman: natural orbitals, SBK PP, FN-DMC
Nemec/Towler/Needs: HF orbitals from GTO and STO basis,
all electron, cusp correction, FN-DMC



Our benchmark methodology

standard FN-DMC code with drift-diffusion propagator,
Metropolis step, local energy, and drift cut-off
Slater-Jastrow one determinant guide function with standard
Schmidt-Moskowitz Jastrow
cc-pVTZ-f basis set (standard TZP GTO basis set without f
functions)
1s and 2s Cusp correction (Manten/Lüchow, JCP 115, 5362
(2001))
Comparison of KS (BP86, B3LYP) and HF orbitals.
Time step extrapolation
experimental geometries



benchmark results: details



benchmark results: conclusions

errors of FN-DMC atomization energies in kJ/mol for 55 molecules
of G2 set using different MOs

R(O)HF UHF B3LYP BP86
MAD 13.4 12.2 10.4 9.4
MD –6.7 –3.7 –4.8 –3.5
RMS 19.2 18.6 15.1 13.4

Grossman: MAD=11.6, MD=-7.8, RMS=16.4 kJ/mol
Nemec/Towler/Needs: MAD for STOs is 13.4, for GTOs 21.3
kJ/mol

Conclusion
No obvious advantage of STO compared with cusp-corrected
GTOs, but significant gain from GGA MOs.



further results on second row molecules

all-electron calculations on 50 molecules with second row
atoms Na – Ar
time-step needs to decrease with nuclear charge Z
calculations with time-step down to 0.00025 a.u.

all-electron FN-DMC for second-row molecules
No loss in accuracy for all-electron FN-DMC calculations using
GTO with cusp-correction.



Do we really need accurate energies?

Why are traditional ab initio methods so successful in spite of
lousy total energies?

systematic error cancellation
Traditional ab initio method have a systematic basis set error
wave function based method have a systematic higher-level
correlation error
DFT methods have a systematic EXC functional bias



Error cancellation in DMC
FN-DMC accuracy of 10 kJ/mol for atomization energies
errors in total energies often 100 kJ/mol
goal: how to improve error cancellation of

node location error
time-step error

visualization of error cancellation in FN-DMC
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Example: ring opening of bicyclo[1.1.0]butane
isomerization of bicyclo[1.1.0]butane to trans-1,3-butadiene
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Example: ring opening of bicyclo[1.1.0]butane
isomerization of bicyclo[1.1.0]butane to trans-1,3-butadiene
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reaction path
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two possible transition state: conrotatory and disrotatory
rearrangement of gauche-butadiene to trans-butadiene



Multireference-DMC

To account for non-dynamical correlation CASSCF guide
functions are calculated
truncated CASSCF functions are employed (with optimized
Jastrow) in FN-DMC
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MR-DMC: bicylcobutane
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FN-DMC increases as CASSCF wave function improves!



MR-DMC: transition states
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only initial decrease then increase of energy, mostly in dis_TS



MR-DMC: products
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Optimal Multi-Reference (OMR-)DMC

Well known fact: FN-DMC increases with improving MCSCF
(Flad, Lüchow, Caffarel,...)

Why?
CASSCF accounts for non-dynamical as well as partially for
the dynamical electron correlation
The dynamical correlation is accounted for by Jastrow:
CASSCF deteriorates nodes
The non-dynamical correlation contribution improves nodes
and FN-DMC

Best compromise: Use minimum of FN-DMC vs # CSF curve
in this example: only 3 CSFs in the dis_TS system, 1 CSF in
educt, 2 CSFs in rest

Alternative: reoptimize CI coefficients (Umrigar, Toulouse, Sorella,
Filippi, Hennig...). Cost?



Results for OMR-DMC
in kcal/mol relative to bicyclobutane

con_TS dis_TS g-but gt_TS t-but
experiment 40(2.5) - - - -25.9(4)
DFT/B3LYP 41.5 49.8 -26.3 -22.8 -29.9
CCSD(T) 40.6 21.8 -25.1 -22.3 -28.0

CR-CCSD(T) 42.8 68.8 -24.8 -22.1 -27.7
CR-CC(2,3) 41.1 66.1 -24.9 -22.1 -27.9
OMR1-DMC 43.4(6) 59.1(5) -25.8(5) -22.8(5) -27.0(5)
OMR2-DMC 42.6(6) 59.4(5) -24.2(5) -22.3(5) -27.5(5)
OMR3-DMC 40.4(5) 58.6(5) -25.2(5) -22.2(5) -27.9(5)
DMC/HF 51(1) 95.2(1) -22.8(9) -20.1(9) -25.8(1)

DMC/B3LYP 54(1) 85.1(8) -23.1(9) -21.1(8) -27.4(1)
DMC/CASSCF 47(1) 91.7(9) -22.5(9) -19.4(9) -25.5(9)

CC: A. Kinal, P. Piecuch, JPCA 111, 734 (2007)
OMR1: small CAS; OMR2: CAS(10,10); OMR3: DMC-optimized
DMC/CASSCF: first det from CAS(10,10)



Discussion of OMR-DMC

CCSD(T) fails to predict a conrotatory TS
B3LYP has too small difference between conrotatory and
disrotatory TS
SR-DMC overestimates both TS
OMR-DMC has excellent agreement with sophisticated
CR-CC calculation (and experiment)
OMR-DMC also improves significantly for small
non-dynamical contributions (products)
Reoptimization of CI coefficients (with DMC!) does not yield
significant improvements
OMR-DMC is very efficient in accounting for dynamical and
non-dynamical electron correlation



Insight from QMC

QMC produces samples from accurate many-body wave
functions

|ΨG |2 in VMC and |ΨG Ψ
(FN)
0 | in FN-DMC

3n dimensional probabilites
contain information about antisymmetry (Fermi hole, “Pauli
repulsion”) and electron correlation

insight from simple model or a posteriori from accurate wave
functions?
binding energies, lone pair energies, orbitals, etc.: no
observables

How to visualize many-body effects like antisymmetry?
QMC emphasizes “real space” analysis (rather than “orbital
space”)



Most probable electron arrangement

Most probable electron arrangement
The maximum of |Ψ(x1, x2, . . . xn)|2 yields the most probable
electron arrangement of all n electrons simultaneously. The
arrangement contains considerable information about the bonding
in the molecule.

Due to antisymmetry, same spin electrons avoid each other
more than unlike spin electrons
For eight electrons (4α, 4β) around an atom, the most
probable arrangement consists of two tetrahedra

Linnett’s double quartet theory (1960), Artmann (1940)

Determination of the maximum of |Ψ|2 is a global optimization
problem: today easy

Metropolis-Monte Carlo random walk combined with local
gradient optimization.



Ethane
Most probable electron arrangement for ethane (HF/cc-pVTZ):

connected tetrahedra
symmetry breaking!



Water

Maximum with correlated wave function (Slater-Jastrow):



Water II



Single electron densities

Electrons are mostly not at the maximum position
Partition the total density ρ(r) into single electron densities
that are obtained by assigning electrons from the many-body
distribution |Ψ|2 to the maximum.

ρ(r) =
n∑

i=1
ρSED

i (r)

Single electron densities (SED)
Assign electrons of many-body distribution |Ψ|2 to a reference
arrangement by finding the permutation that minimizes the
distance (in R3n) to the reference. Single electron densities are the
densities of the assigned electrons.



Single electron densities (SED)

Compare:
electron density (integrating to electron number n)

ρ(r1) = n
∫
|Ψ(R)|2dr2 . . . drn, R = (r1, r2, . . . , rn)

single electron density for electron 1:

ρSED
1 (r1) =

∫
|Ψ(PR)|2dr2 . . . drn, R = (r1, r2, . . . , rn)

where the permutation P depends on R and a reference
arrangement Rref

Currently we require: |PR− Rref |
!

= min



Ethane
uncorrelated wave function



Water
correlated wave function



Water



Water: “electron pairs”

add SEDs to pairs, use symmetry (invariant maxima)
obvious relation to VSEPR model



Comparison to ELF

Electron structure is mostly determined by antisymmetry of
electronic wave function – and by attraction from the nuclei.
Antisymmetry is an inherently many-body effect – difficult to
visualize
ELF measures the excess kinetic energy due to antisymmetry
SEDs contain the many-body information because the
assignment to a SED depends on all electrons
ELF and SED show similar spatial topology (?!)



double bond: ethene

splitting of α and β maximum already at uncorrelated level
“banana” type bonds with distorted tetrahedral arrangement



double bond: ethene
double bond “electron pairs” after adding upper and lower
SEDs (of all invariant maxima)



fluorine dimer F2



fluorine dimer bond

strong left-right correlation (55 % LR vs. 52% in H2O2,
N2H4, C2H6)



nitrogen monoxide NO

regular tetrahedral, triangular or linear arrangement for 6α
and 5β electrons



NO
α, β systems avoid building electron pairs due to Coulomb
interaction



Benzene



Conclusions

partitioning of density based on physically meaningful max of
|Ψ|2

like ELF role of antisymmetry in electron structure is visualized
structure of SEDs easily understood in terms of Fermi holes
and Coulomb interaction
electrons of unlike spin separate rather than unite if possible
(ethene, benzene, etc.)
energy partitioning based on SEDs is intuitive and simple:
SED pair energies
many-body real space analysis independent of models (MO,
VB)


