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The VMC algorithm

In VMC we sample configurations {R1, . . . ,RM} distributed
according to |Ψ(R)|2

We evaluate the variational energy as EVMC = 1
M ∑

M
m=1 EL(Rm)

This energy has an uncertainty given by ∆ = σ√
M/ncorr

σ2 is the variance of the sample of local energies, which
depends on Ψ
ncorr is the (integrated) correlation length of the sample of
local energies, which depends on how we sample configurations

A VMC calculation is more efficient the less time it takes to
achieve a target errorbar: E =

(
∆2MTiter

)−1
=

(
σ2ncorrTiter

)−1

It is inefficient to attempt to maximize this directly with
respect to any parameter due to the multiple evaluations of
ncorr that this would require
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VMC sampling

{Rm}m=1,...,M are generated using the Metropolis algorithm:

Propose move from Rm to R′m with probability T(R′m← Rm)

Compute A(R′m← Rm) = min
(

1, T(Rm←R′m)
T(R′m←Rm)

|Ψ(R′m)|2
|Ψ(Rm)|2

)
Draw random number 0 < ζ < 1 from a uniform distribution,
and

If ζ < A(R′m← Rm), make Rm+1 = R′m (accept move)
Otherwise, set Rm+1 = Rm (reject move)

To achieve reasonable acceptance ratios, proposed
configurations are the original plus a normally-distributed
random displacement of variance τ

This causes serial correlation (ncorr > 1)
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VMC sampling
Common modifications

Electron-by-electron sampling

It is possible to use a variation of the Metropolis algorithm
where one proposes single-electron moves and accepts or
rejects them individually

Advantage: larger steps can be taken with high acceptance
ratios, thus reducing ncorr

Disadvantage: the evaluation of N single-electron
wave-function ratios is more expensive than that of one
all-electron wave function ratio, and especially for complicated
functional forms (e.g., Slater determinants with backflow
transformations), which increases Titer
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Decorrelation loops

One can perform p > 1 Metropolis steps between evaluations
of the local energy

Advantage: ncorr decreases

Disadvantage: the extra moves increase Titer
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VMC sampling
Common modifications

Averaging successive local energies

The mth local energy can be replaced by the average
[1−A(R′m← Rm)]EL(Rm) + A(R′m← Rm)EL(R′m)

Advantage: more statistics, especially important at low
acceptance ratios, potentially reducing ncorr

Disadvantage: needs more energy evaluations, increasing Titer

This has proved inefficient in electron-by-electron sampling, so
will only test in configuration-by-configuration sampling
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Methodology
Test results
Functional form of E (p)

Things to look into

Optimal value of τ?

Electron-by-electron versus configuration-by-configuration -
which to use when?

Decorrelation loops - optimal length?

Is averaging energies over proposed configurations useful?
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Methodology

Choose 6 relevant systems of different sizes

Run short (but significant) VMC calculations spanning 16
values of τ and 10 values of p

Run electron-by-electron and configuration-by-configuration
versions of the above, the latter with and without averaging
over successive energies

Use Slater-Jastrow and Slater-Jastrow-backflow wave function
forms

Total: 5760 runs

Use the data to locate maximum efficiency for each case,
compare, analyze, etc
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Pseudo Nitrogen atom, Slater-Jastrow, EBES vs CBCS
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HEG, Slater-Jastrow, EBES vs CBCS
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Pseudo NiO molecule, backflow, EBES vs CBCS
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All-electron N2H4, backflow, CBCS vs CBCS2
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Pablo López Ŕıos VMC sampling efficiency



Background
Practical tests

Summary and recommendations

Methodology
Test results
Functional form of E (p)

Functional form of E (p)

Cost of one energy evaluation: Titer(p) = pTmove + Tenergy

Assuming M→ ∞, and that the autocorrelation of the local
energies is dominated by a single exponential,

ncorr(p) = 1 + 2 (ncorr−1)p

(ncorr+1)p−(ncorr−1)p

One can minimize Titer(p)ncorr(p) numerically if ncorr and
Tenergy/Tmove are know.
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Summary and recommendations

Use electron-by-electron sampling

Optimize τ so as to achieve a 50% acceptance ratio

Set p to 3-5, or compute ncorr from a short run and maximize
E numerically

Do not average over successive energies

We’ve been doing it right all along!
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