Random errors and outliers in QMC

Robert Lee rml38@cam.ac.uk TCM Group Cavendish Laboratory University of Cambridge

Outline

- QMC and serial correlation
- Correlation lengths
- Reblocking
- Statistical errors
- > The effect of uncertainty in the correlation length

Serial correlation

Both VMC and DMC data typically show some degree of serial correlation.

Correlation lengths

If we perform a VMC calculation, taking *n* steps and obtaining an estimate σ_0^2 of the variance, then the standard error is

where $n_{\rm corr}$ is the correlation length.

It is usually the case that we only have an estimate of $n_{\rm corr}$, probably from the data itself.

Estimate the correlation length using

$$n_{\rm corr}(L) = 1 + 2\sum_{k=1}^{L} \left\langle \left(A_j - \left\langle A \right\rangle \right) \left(A_{j+k} - \left\langle A \right\rangle \right) \right\rangle_j,$$

where the sum is truncated as soon as the inequality $L < 3n_{corr}(L)$ is violated.

Reblocking

Reblocking

Particularly for short/expensive calculations, both methods can lead to considerable uncertainty in the error bar

U. Wolff, Comput. Phys. Commun. 156, 143 (2004).

Gathering some statistics

Example: The C atom

- Perform a VMC run consisting of 10⁷ steps
- Split the data up into $N_{\rm runs}$ 'runs' of length $10^7/N_{\rm runs}$
- Estimate the mean, correlation length n_{corr} and corrected error for each run separately
- Observe how the uncertainty in n_{corr} affects the probability of observing an energy more than Q error bars from the underlying mean

If we knew the error bar exactly...

Results - C atom, 10^7 steps

Results - bulk Si, 1.5×10^7 steps

Non-Gaussian distributions

J. R. Trail, Phys. Rev. E 77, 016703 (2008).

Outliers when we have a Gaussian $P_{loc}(E_L)$

We can say something more about the result when the distribution of local energies is Gaussian.

The distribution of mean energies is

$$p_{\rm ave}(\bar{E}) = \sqrt{\frac{\nu_0}{2\pi\sigma_0^2}} \exp\left[\frac{-(\bar{E}-E_0)^2}{2\sigma_0^2/\nu_0}\right]$$

The distribution of errors is

$$p_{\rm err}(\Delta,\nu) = \frac{\Delta^{\nu-2} \exp\left[-\frac{\nu(\nu-1)\Delta^2}{2\sigma_0^2}\right] p_{\rm ind}(\nu)}{\left(\frac{\nu(\nu-1)}{\sigma_0^2}\right)^{\frac{1-\nu}{2}} 2^{\frac{\nu-3}{2}} \Gamma\left(\frac{\nu-1}{2}\right)} ,$$

where Δ is the estimated error bar, $\nu = n/n_{\rm corr}$, and ν_0 is the 'true' value of n/n_{corr} .

Estimating $n/n_{\rm corr}$

Fit the distribution of $u = n/n_{
m corr}$ to the VMC data with the form

Frequency of outliers

The probability of observing a mean energy more than Q error bars from the underlying mean may then be found,

$$\begin{split} \mathrm{P}\left(\delta\bar{E} > Q\Delta\right) &= \int_{2}^{\infty} \mathrm{d}\nu \int_{0}^{\infty} \mathrm{d}\Delta \left[\int_{E_{0}+Q\Delta}^{\infty} \mathrm{d}\bar{E} \, \mathrm{p}_{\mathrm{ave}}(\bar{E}) \right. \\ &+ \left.\int_{-\infty}^{E_{0}-Q\Delta} \mathrm{d}\bar{E} \, \mathrm{p}_{\mathrm{ave}}(\bar{E})\right] \mathrm{p}_{\mathrm{err}}(\Delta,\nu) \; , \end{split}$$

where $\delta \bar{E} = |\bar{E} - E_0|$

Results (C atom)

Results (bulk Si)

Conclusions

- One must exercise caution when there is little data because the conventional interpretation of error bars may not hold.
- My data indicate that most of this effect is due to uncertainty in the correlation length.
- Obtaining an accurate estimate of the correlation length from elsewhere (a larger data set on a similar system) could help.

Acknowledgements

Richard Needs Neil Drummond EPSRC UK

ICM