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The effect of uncertainty in the correlation length



Serial correlation
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Both VMC and DMC data typically show some degree of serial
correlation.



Correlation lengths

If we perform a VMC calculation, taking n steps and obtaining an
estimate 0(2) of the variance, then the standard error is

00

NG

g0
Acorrect = )
\/n/Neorr

where ncqop;p is the correlation length.

Anaivc

It is usually the case that we only have an estimate of ngq,;,
probably from the data itself.



Correlation lengths

Estimate the correlation length using

Moors (L) = 142 (A = (A) (Ajek — (A));

where the sum is truncated as soon as the inequality L < 3ncop (L)
is violated.
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Reblocking

Particularly for short/expensive calculations, both methods can
lead to considerable uncertainty in the error bar

T Yo - —

o
()
o

o
(@)
Y

o
()
@

Standard error in the mean (au

o
Q

2 4 6 8
Reblacking transformation no. (log(B)/log(2))

U. Wolff, Comput. Phys. Commun. 156, 143 (2004).



Gathering some statistics
Example: The C atom

» Perform a VMC run consisting of 10 steps
» Split the data up into Nyyns ‘runs’ of length 107/Nmns

» Estimate the mean, correlation length nco, and corrected
error for each run separately

» Observe how the uncertainty in n.o affects the probability of
observing an energy more than @ error bars from the
underlying mean



If we knew the error bar exactly...
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Results - C atom, 107 steps
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Results - bulk Si, 1.5 x 107 steps
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Non-Gaussian distributions
J. R. Trail, Phys. Rev. E 77, 016703 (2008).
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Outliers when we have a Gaussian Py,.(E;)

We can say something more about the result when the distribution
of local energies is Gaussian.
The distribution of mean energies is
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The distribution of errors is
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where A is the estimated error bar, v = n/ncor, and vy is the
‘true’ value of n/ncor.



Estimating n/neop
Fit the distribution of v = n/nce;; to the VMC data with the form
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Frequency of outliers

The probability of observing a mean energy more than Q error bars
from the underlying mean may then be found,

P (6E > QA) = /;odV/OOOdA [/:QAdEpave(E)
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Results (C atom)
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Conclusions

» One must exercise caution when there is little data because
the conventional interpretation of error bars may not hold.

» My data indicate that most of this effect is due to uncertainty
in the correlation length.

» Obtaining an accurate estimate of the correlation length from
elsewhere (a larger data set on a similar system) could help.
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