
Random errors and outliers in QMC

Robert Lee
rml38@cam.ac.uk

TCM Group
Cavendish Laboratory

University of Cambridge



Outline

◮ QMC and serial correlation

◮ Correlation lengths

◮ Reblocking

◮ Statistical errors

◮ The effect of uncertainty in the correlation length



Serial correlation
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Both VMC and DMC data typically show some degree of serial
correlation.



Correlation lengths

If we perform a VMC calculation, taking n steps and obtaining an
estimate σ2

0 of the variance, then the standard error is

∆naive =
σ0√
n

∆correct =
σ0

√

n/ncorr

,

where ncorr is the correlation length.

It is usually the case that we only have an estimate of ncorr,
probably from the data itself.



Correlation lengths

Estimate the correlation length using

ncorr(L) = 1 + 2

L∑

k=1

〈
(Aj − 〈A〉) (Aj+k − 〈A〉)

〉

j
,

where the sum is truncated as soon as the inequality L < 3ncorr(L)
is violated.



Reblocking
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Reblocking

Particularly for short/expensive calculations, both methods can
lead to considerable uncertainty in the error bar
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U. Wolff, Comput. Phys. Commun. 156, 143 (2004).



Gathering some statistics
Example: The C atom

◮ Perform a VMC run consisting of 107 steps

◮ Split the data up into Nruns ‘runs’ of length 107/Nruns

◮ Estimate the mean, correlation length ncorr and corrected
error for each run separately

◮ Observe how the uncertainty in ncorr affects the probability of
observing an energy more than Q error bars from the
underlying mean



If we knew the error bar exactly...
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Results - C atom, 107 steps
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Results - bulk Si, 1.5 × 107 steps
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Non-Gaussian distributions

J. R. Trail, Phys. Rev. E 77, 016703 (2008).
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Outliers when we have a Gaussian Ploc(EL)

We can say something more about the result when the distribution
of local energies is Gaussian.
The distribution of mean energies is

pave(Ē ) =

√
ν0

2πσ2
0

exp

[−(Ē − E0)
2

2σ2
0/ν0

]

The distribution of errors is

perr(∆, ν) =
∆ν−2 exp

[

−ν(ν−1)∆2

2σ
2
0

]

pind(ν)

(
ν(ν−1)

σ
2
0

) 1−ν

2
2

ν−3
2 Γ

(
ν−1
2

)
,

where ∆ is the estimated error bar, ν = n/ncorr, and ν0 is the
‘true’ value of n/ncorr .



Estimating n/ncorr

Fit the distribution of ν = n/ncorr to the VMC data with the form

pind(ν) = Aexp

(−(ν − µν)
2

2σ2
ν

)[

1 + erf

(

α(ν − µν)
√

2σ2
ν

)]

+ Bexp

(−C

ν

)

|ν|−D
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Frequency of outliers

The probability of observing a mean energy more than Q error bars
from the underlying mean may then be found,

P
(
δĒ > Q∆

)
=

∫
∞

2
dν

∫
∞

0
d∆

[
∫

∞

E0+Q∆
dĒ pave(Ē )

+

∫ E0−Q∆

−∞

dĒ pave(Ē )

]

perr(∆, ν) ,

where δĒ = |Ē − E0|



Results (C atom)
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Results (bulk Si)
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Conclusions

◮ One must exercise caution when there is little data because
the conventional interpretation of error bars may not hold.

◮ My data indicate that most of this effect is due to uncertainty
in the correlation length.

◮ Obtaining an accurate estimate of the correlation length from
elsewhere (a larger data set on a similar system) could help.
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