Auxiliary-field QMC for quantum chemistry: recent progress and open issues

Henry Krakauer College of William & Mary, USA

Outline

- Introduction
 - Orbital-based QMC --- identical *H* as in quantum chemistry
 - Random walks in Slater determinant space
 - Any 1-electron basis [planewaves, gaussian type orbitals (GTO), ..]
 - Overall phase constraint on SD: a new way to deal with the sign problem
 - Code naturally builds on top of standard DFT, scales as N³-N⁴
- Applications: molecules, bond breaking, solids,
- Recent algorithmic developments:
 - Resolution of the identity (RI) --> larger basis sets with GTO

Collaborators:

- Wirawan Purwanto
- Shiwei Zhang
- Eric Walter

Support:

- DOE (ThChem, petascale endstation), NSF, ONR

Some references:

- Zhang & Krakauer, PRL '03
- Al-Saidi et. al., PRB '06; JCP, '06; JCP '07
- Kwee *et. al.*, PRL '08
- Purwanto et. al., JCP '08; JCP '09; PRB '09
- Chang & Zhang, PRL '10

Quantum chemistry

The full many-body wave function is spanned by all possible Slater determinants, which can be formed from the *M* occupied and virtual HF orbitals, where *M* is the size of the 1particle basis. QM chem - e.g. single reference, orthogonal det's

Overview - how does auxiliary-field QMC work? Random walks of *non-orthogonal* Slater determinants

A single random walker in AFQMC is a Slater determinant: $\Phi_0 = A \left[\phi_1(x_1) \phi_2(x_2) \cdots \phi_N(x_N) \right]$

- AFQMC is naturally *multi*-reference: *not* the HF orbitals
- any orbital that can be expressed in the basis:

$$\phi_j(x) = \sum_{i=1}^M \alpha_{ji} G_i(x)$$

Mno

DMC:
$$(x_1, x_2, \cdots, x_N)$$

AF QMC: basic formalism

To obtain ground state, use projection in imaginary-time:

 $|\Psi^{(n+1)}
angle = e^{- au\hat{H}} |\Psi^{(n)}
angle \quad \stackrel{n o\infty}{\longrightarrow} \quad |\Psi_0
angle$

 τ : cnst, small $|\Psi^{(0)}\rangle$: arbitrary initial state

Electronic Hamiltonian: (2nd quantization, given any 1-particle basis)

 $\hat{H} = \hat{H}_{1} + \hat{H}_{2} = \sum_{i,j}^{M} T_{ij}c_{i}^{\dagger}c_{j} + \sum_{i,j,k,l}^{M} V_{ijlk}c_{i}^{\dagger}c_{j}^{\dagger}c_{k}c_{l} \qquad M \text{ basis functions}$ $(\text{textbooks: } M = \infty)$ $QM \text{ chemistry: } M \propto H$ QM chemistry: $M \propto N$ Recall

$$H = H_1 + H_2 = -\frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + \sum_{i=1}^N V_{\text{ext}}(\mathbf{r}_i) + \sum_{i< j}^N V_{\text{int}}(|\mathbf{r}_i - \mathbf{r}_j|)$$

AF QMC: basic formalism

To obtain ground state, use projection in imaginary-time:

 $|\Psi^{(n+1)}
angle = e^{- au\hat{H}} \; |\Psi^{(n)}
angle \; \stackrel{n
ightarrow\infty}{\longrightarrow} \; \; |\Psi_0
angle$

 τ : cnst, small $|\Psi^{(0)}\rangle$: arbitrary initial state

Electronic Hamiltonian: (2nd quantization, given any 1-particle basis)

 $\hat{H} = \hat{H}_1 + \hat{H}_2 = \sum_{i,j}^M T_{ij}c_i^{\dagger}c_j + \sum_{i,j,k,l}^M V_{ijlk}c_i^{\dagger}c_j^{\dagger}c_kc_l$ M: basis size $\begin{array}{ccc} \hat{H}_2 \rightarrow -\sum \hat{v}^2 & \text{with } \hat{v} = 1\text{-body} \\ \text{Hubbard-Strotonivich transf.} \end{array} \\ e^{-\tau \hat{H}} \rightarrow e^{-\tau \hat{H}_1} \int e^{-\sigma^2/2} e^{\sigma \sqrt{\tau} \, \hat{v}} \, d\sigma \end{array}$ DFT: $\hat{H}_2 \rightarrow \sum_i f_c(n_i) \hat{n}_i$ HF: $c_i^{\dagger} c_j^{\dagger} c_k c_l \rightarrow \langle c_i^{\dagger} c_l \rangle c_j^{\dagger} c_k + \cdots$

interacting system $\rightarrow \sum$ (non-interacting system in auxiliary fields)

Auxiliary-field methods: some background

• Applied in models in condensed matter, nuclear physics, (lattice QCD),

Scalapino, Sugar, Hirsch, White et al.; Koonin; Sorella,

interacting $\rightarrow \sum$ (non-interacting in fields)

basic idea: Monte Carlo to do **sum** (path integral)

• Potential for real materials well recognized

Fahy & Hamann; Silvestreli, Baroni & Car; Wilson & Gyorffy; Baer et. al.;

- However,
 - > sign problem for "simple" interactions (Hubbard)
 - > phase problem for realistic interaction
- Our reformulation gives a way to control the problem by an approximation to have a N³ or N⁴ scaling algorithm

AF QMC - schematic implementation

Random walks in Slater determinant space:

Recall
$$|\Psi^{(n+1)}\rangle = e^{-\tau \hat{H}} |\Psi^{(n)}\rangle \xrightarrow{n \to \infty} |\Psi_0\rangle$$

 $\|H\text{-S transformation}$
 $\int e^{-\sigma^2/2} e^{\hat{\mathbf{v}}(\sigma)} d\sigma \qquad 1\text{-body: } \sum_{i,j} v_{ij}(\sigma) c_i^{\dagger} c_j$

Schematically:

$$\begin{split} |\Psi^{(0)}\rangle \xrightarrow{e^{-\tau \hat{H}}} & |\Psi^{(1)}\rangle & \dots & \rightarrow |\Psi_{0}\rangle \\ & \text{sample } \sigma \text{ from } e^{-\frac{\sigma^{2}}{2}}; \\ |\phi^{(0)}\rangle \xrightarrow{\text{apply 1-body propag.}} & |\phi^{(1)}(\sigma)\rangle & \rightarrow |\phi\rangle & \iff \text{Slater det.} \\ & \vdots & & \vdots \\ & |\Psi_{0}\rangle \doteq \sum_{\phi} |\phi\rangle \end{split}$$

AF QMC - schematic implementation

Random walks in Slater determinant space:

AF QMC - schematic implementation

Random walks in Slater determinant space:

The sign problem

Sign/phase problem is due to -- $\Phi_0 = A \Big[\phi_1(x_1) \phi_2(x_2) \cdots \phi_N(x_N) \Big]$

Reasonable to expect that problem is reduced, since tendency for global collapse to bosonic state is removed

To eliminate sign problem:

Use $\langle \Psi_T | \Psi \rangle = 0$ to determine if "superexchange" has occurred

The sign problem and the constraint

- The constraint is exact when $\operatorname{sgn}[\langle \Psi_T | \Psi \rangle] = \operatorname{sgn}[\langle \Psi_{GS} | \Psi \rangle]$
 - similar to fixed-node in DMC, but the global sign of a Ψ (fermionic) is less demanding than that of *R* (bosonic)
- "Mixed estimate" of total energy not an upper bound
- The method is exact if $\langle \Psi_T | \Psi \rangle$ is always non-negative

Controlling the phase problem

Sketch of approximate **solution**:

- Modify propagator by "gauge transformation":
 phase → degeneracy (use trial wf)
- Project to one overall phase: break "rotational invariance"

$$\sum_{\phi} rac{|\phi
angle}{\langle \Psi_T | \phi
angle}$$

- subtle, but key, difference from: real $\langle \Psi_T | \phi
 angle$

(Fahy & Hamann; Zhang, Carlson, Gubernatis) After:

4

projection time $n\tau$ (Ry⁻¹)

5

6

-8.15

1

Controlling the phase problem

Quantify the approximation?

free-proj: our 'FCI' (8 electrons, Nbasis~570)

Test application: molecular binding energies

HF: x

LDA: triangle

GGA: diamond

- All with single mean-field determinant as trial wf
- "automated" post-HF or post-DFT
- HF or LDA trial wf: same result

Constraint independent of trial wf details

MnO solid in antiferromagnetic II phase:

	Evar	E_QMC/trial wf	
HF	-118.2655	-119.1401(12)	
GGA	-118.1929	-119.1387(10)	
	-119.0614 (E_GGA)		

Energy in Hartree/unit cell 4-atom cell, V=21.96 A³

QMC insensitive to details of the trial wave function

Spin restriction (R vs U type of trial wfs) does have effect: e.g., water molecule:

Bond length	RHF	UHF	CCSD(T)	FCI	QMC/RHF	QMC/UHF
STO-6G						
$1.5R_e$	-75.440 432	-75.502 069		-75.600 039	-75.5768(3)	-75.5965(6)
$2R_e$	-75.141 587	-75.464 541		-75.486 528	-75.3557(3)	-75.4880(3)
					no up	oper bound!

F₂ bond breaking

Mimics increasing correlation effects:

F₂ bond breaking --- larger basis

• LDA and **GGA/PBE**

- well-depths too deep

• B3LYP

- well-depth excellent
- "shoulder" too steep

• Compare with experiment spectroscopic cnsts:

AFQMC RCCSD(T) UCCSD(T) LSDA GGA/PBE B3LYP $Expt^{a}$ Basis: cc-pVQZ r_e (Å) 1.4131(8) 1.411(2) 1.4108 1.3946 1.3856 1.4136 1.3944 $\omega_0 \,({\rm cm}^{-1}) \,\,916.64 \,\,\,912(11)$ 929 1036 1109 1062 997 $D_e (eV)^b$ 1.693(5)1.77(1)1.567 3.473 2.321 1.634 1.693(5)1.70(1)1.594 1.569 $D_e (eV)^c$

Purwanto et. al., JCP, '08

Excited states

- Excited states are more difficult
- For QMC, this is manifested as a more severe sign/phase problem, especially for excited states with the same symmetry as the GS
- A first attempt, using the same approach as in GS \rightarrow

Excited states

Excited states

TZ and QZ basis:

-75.1

TABLE IV. AFQMC/CASSCF calculated C_2 ground state spectroscopic constants compared to experiment. Conventions are as in Table II. Calculations used the cc-pVQZ basis set (except CMRCI which used the cc-pV5Z basis).

	CASS	CASSCF(8,16)				
	Full	Truncated	CCSD(T)	CMRCI ^a	QMC	Expt.
			$X^{-1}\Sigma_{g}^{+}$ ground st	ate		
r _e	1.2452	1.262[3]	1.2459	1.2467	1.244(1)	1.2425
ω_{e}	1868	1759[29]	1852	1853	1850(21)	1855
D _e	6.57	4.69[1]	6.19	6.29	6.41(1)	6.33

22

Truncated CASSCF(8,16) trial wf ~30-50 det's

Larger basis size with GTOs

• computational scaling of phaseless AF QMC

basis	start-up	propagating
planewave/psp	~0	$N^2 M \log(M)$
GTO	M ⁶ (brute force)	M^3 & M^4 (energy calc)

• We've implemented a modified Cholesky to remove M^6

Table: Comparison of diagonalization vs. modified Cholesky method. *M* is the basis size. Times are reported in seconds. Calculations were done on an AMD workstation with 8-core OpenMP parallelism.

М	Time	Time (mod-	J_{\max}
	(diagonalization)	Cholesky)	
101	3608	11	592
155	33649	66	1044
180	67194	108	1247
216		112	1480
344		1066	2255

M⁶ bottleneck? - AFQMC with GTO basis:

$$\hat{H} = \hat{H}_1 + \hat{H}_2 = \sum_{\mu\nu}^M T_{\mu\nu} c_{\mu}^{\dagger} c_{\nu} + \sum_{\alpha\beta\mu\nu}^M V_{\alpha\beta\mu\nu} c_{\alpha}^{\dagger} c_{\mu}^{\dagger} c_{\beta} c_{\nu}$$

Hubbard-Stratonivich transformation requires:

$$\hat{H}_2 = \sum_{\lambda} \hat{v}_{\lambda}^2 \quad \hat{v}_{\lambda} = 1$$
-body

Brute force solution - diagonalize $M^2 \times M^2$ matrix:

$$V_{\alpha\beta\mu\nu} = V_{\{\alpha\beta\},\{\mu\nu\}}$$

Avoid bottleneck: resolution of identity (RI)

2-body Coulomb:
$$(\mu v | \lambda \sigma) = \int d\mathbf{r}_1 \int d\mathbf{r}_2 \chi_\mu(\mathbf{r}_1) \chi_\nu(\mathbf{r}_1) r_{12}^{-1} \chi_\lambda(\mathbf{r}_2) \chi_\sigma(\mathbf{r}_2)$$

RI:
$$r_{12}^{-1} = \sum_{n}^{\infty} \phi_n(\mathbf{r}_1) \phi_n(\mathbf{r}_2)$$
 e.g., *PW's*: $\frac{1}{2\Omega} \sum_{\mathbf{Q} \neq \mathbf{0}} \frac{4\pi}{Q^2} \hat{\rho}^{\dagger}(\mathbf{Q}) \hat{\rho}(\mathbf{Q})$
O(8*M*)

I) density fitting:
 pre-defined
 auxiliary basis

$$|\mu v\rangle \approx |\widetilde{\mu v}\rangle = \sum_{P} C^{P}_{\mu v} |P\rangle \qquad P \ll M^{2}$$
$$(\mu v |\lambda \sigma) \approx \sum_{PQ} C^{P}_{\mu v} (P|Q) C^{Q}_{\lambda \sigma}$$

II) modified Cholesky*: accuracy controlled by one $(\mu \nu | \lambda \alpha) \approx \sum_{j=1}^{J} L_{\mu\nu}^{(j)} L_{\lambda\alpha}^{(j)} \quad J \ll M^2$ parameter - unbiased

* Beebe NHF, Linderberg J (1977) Int J Quantum Chem 12:683

Test: model H-storage problem

 Model system of Ca¹⁺ / 4H2
 Possible high-density H storage by dispersed alkalineearth metals?
 6-311+G**

Can now do with modified Cholesky

Discussion and open issues

- Approximate (global phase condition) --- how accurate?
 - method relatively new, but quite extensive tests in GS (~100 systems: atomization, IP, EA, Re,)
 - can recover from wrong constraining trial wf (eg F_2)
 - Further improvement:
 better constraining wf; back propagation; release;
- Favorable computational scaling $\sim O(M^3 M^4)$
 - reduce prefactor: (remove M⁴?)
 GTO tricks; better basis; resolution of the identity (modified Cholesky example);
 - natural hierarchy in auxiliary-fields, localization,

Summary

- AF QMC : random walks in mean-field space
 - Orbital-based, non-perturbative, many-body method
 - Approximate: (exact without constraint -- FCI-like)
 - QMC's only source of error reduced --> making QMC more a "blackbox", for more problems
 - encouraging accuracy and robustness
- Applications & benchmarks
 - comparable to CCSD(T) around equilibrium geometry
 - better for stronger correlations, e.g. bond-breaking in molecules
- Modified Cholesky for GTOs
- Various opportunities to import techniques from QC
- A new wf-based method which can directly use much of the existing machinery from DFT/HF:

--- superposition of independent-particle calculations

Thank you!

Periodic Solids

Silicon structural phase transition (diamond --> β -tin):

- transition pressure is sensitive: small dE
- AFQMC
 - ✓ 54-atom
 - **supercells**+finite-size correction
 - ✓ PW + psp
 - ✓ uses LDA trial wf
- Good agreement w/
 experiment --- consistent
 w/ exact free-proj checks