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Outline

* Introduction to the quantum transport
problem

* Ab Initio quantum conductance in the

presence of e-e interaction (TDDFT /
MBPT)

 Beyond conductance: /(V), spectral
functions with e-ph interaction
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Bothersome aspects of
quantum transport

| Ab-initio model

Non-equilibrium
Quantum Mechanics

Many-body problem

I())=I([U]);
Conductance
G=I/U for

steady state
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Experiments & modelling
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X. D. Cui et al. Science, 294 571 (2001)

Experiments:

Octanedithiol/Au: R = 900 MQ
[X. D. Cui et al., Science (2001).]
Benzene-di-amin/Au: R = 2 MQ
[Quek, Nano Lett. (2007).]
Benzene-di-thiol/Au: R = 18+12 MQ
[M. A. Reed et al. Science (1997).]
H,/Pt: G = 0.95 G, (= 1/(13 kQ))

[R.H.M.Smit et al. Nature (2002).]

Theory - Density Functional Theory + NEGF:

for G = G, generally good
for G << G, poor
e.g. G = 0.046 G, for Benzene-di-amin/Au
[Quek, Nano Lett. (2007).]
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1. Ab Initio Quantum
Conductance with e-e
Interaction



Quantum Transport
— b 0 T=Yo) g [=1S

o 2
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e Conductance in 1-electron or mean-field theory
given by Landauer formula

 Drawbacks of usual approach:
— Can be orders of magnitude wrong
— Difficult to generalise to many-body case

— Calculation of T not readily compatible with periodic
bcs
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NEGF Laudauer-Buttiker

Mads Brandbyge et al. PRB (2002). | .\' QQ @@

Central region Right lead
e Real difficulty in transport - the system is infinite!! (C) (R)

H;, G He, Ge Hp Gg

e

-VL \% R

e Contacting-based formulation

Ge+ Ge(0He+ Xce) - Gee,  “The Dyson eq. - DFT SCF for centre”
VGV + VRGrVE, “The leads’ self-energies”

GV Gee ‘“leads - typically not SCE”
Typically leads” SCF neglected = errors few %

2 o

—R{Tr [VGi]} _ : —
h | Lirs | Gop/Gau—as | Car/Cau—ns |
1.0 0.89 1.24
15 0.97 1.06
3.0 1.00 1.00

[Mera, Bokes, Godby PRB 72, 085311 (2005).]
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Our Approach

« TDDFT functionals for guantum transport
still problematic

 Formulate the linear-response theory of
conductance for rigorous ab-initio
modelling within a supercell technique:

—well defined conductance [T R T T
— converged basis set .

— realistic e-e Iinteraction
GW method

P. Bokes, J. Jung and RWG, PRB 2007
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The 4-point conductance
P. Bokes, J. Jung and RWG, PRB 2007 N w4
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Integrals - real space
formulation

“2P” conductance:

0 (L
Gl X" = af J dzd7' x"(z,7' i)
2 J0

IZl

irreducible polarizability:
Sn(z)

4P Correction factor:

0 i
Fa[}(m‘] - af (]:f (]:,!Xlll(:,q:,!):!
=T, <
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Implementation and
Convergence

Verstraete, Bokes and Godby,
J. Chem. Phys. 130 124715 (2009)



Real-space integrals
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Finite-size convergence
tests

e Study two simple systems for which G can
be calculated analytically as a function of
system size (also for infinite size)

— 1D jellium wire
— 1D tight-binding model
« Calculate at T=0 and T~EFor bandwidth
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wWw—0 Limit

ecnccelocttsosadiass

e
mosscosiiocccsccaiios
ittt Al tietd. A
aoococcibocsscscciios
ittt Antubutelintututed. At

 Moving electron does not “see” 2w L

neighbouring cell if o v
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Finite-size convergence tests -
Jellium wire

0.35

1D jellium, 3 =00 ——
0.3 N=do

* N =no. of Na-
equivalent atoms

Dot indicates
wminzzrer/L
« Convergence with
N

£ = 1000

s i,
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Finite-size convergence tests -
Tight-binding wire

N = no. of tight-
binding atoms

e Dot indicates
w, . =21TVv./L

« Convergence with
N
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Results for Real Atomic
Wires

Verstraete, Bokes and Godby,
J. Chem. Phys. 130 124715 (2009)



Uniform Na monowires

 Troullier-Martins
pseudopotential

 RPA, equivalent to ) —
Landauer-Buttiker o Sty
« Plane-wave basis set .

 (Good convergence
of extrapolated value
with 8-atom cell, to
expected 2.0 quanta

(shown in blue) 05
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Na monowires with a gap

« Missing atom (e.g.
2+gap+2)

e (Good extrapolation
available for even
nos. (odd has wrong
Fermi energy)
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Na monowires with a gap

(2)

* As a function of gap
size (8-atom leads)

e (Good extrapolation
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Au wires with structured
leads

e 2-atom gold wire
between gold
electrodes

 Equivalently, a
constriction —
* HGH-type il ;e
pseudopotential (6s) '. 2 lay + kpt

 Convergence Ww.r.t.
electrode thickness

Conductance (atomic units)

0.5
Im frequency (Ha)
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Beyond RPA:
Many-Body Effects



Calculating yx including
Interactions

* Time-dependent density-functional theory
—e.g. J. Jung, P. Bokes, and RWG, PRL 2007

— but the form of the XC kernel is delicate

 Na Sai, PRL(2005), Koentopp PRB(2006), Toher
PRL(2005), Burke PRL(2005)

e or, Many-body perturbation theory

X(r,r';it)==2G(r,r';iT)G(r',r;—it)

+ vertex diagrams
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Electronic Excitations

| N,0>

THE UNIVERSITY oFHork Nn"‘
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|IN+1,s> |N-1s>
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Hedin’s Equations

[ W (17.3) G (1L4)T (4,2,3) d (3,4)

i [ G(2.3)G(4.2)T(3,4,1)d(3,4)

v(1,2)+ [ W (1,3)P(3,4)v(4,2)d (3,4)
0(1,2)0(1,3)
/‘ 0% (1,2)

mc (4,6)G(7,5)1'(6,7,3)d(4,5,6,7)

« With X/G relation, exact closed equations
for G, X etc.
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The GW Approximation

lterate Hedin’s equations once starting
with =0
[u 1+, 3)@(1 4)

)+ [ W (1,3) P(3,4)v(4,2)d (3.4)

2)0 ( l 3)
)

(1,2
o (1.
02
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Local-density-approximation
calculation of one-electron
wavefunctions and eigenvalues,
using ab initio pseudopotentials

Compute screened
Coulomb
interaction W

Compute Green's
function G

Compute self-energy
2(rr',w

Solve Dyson equation to obtain
updated Green's function
G(r,r',w)

Charge density +
momentum distn.

Updated
self-energy

Spectral function

Total energy

QP
energies
E

Space-time method:

H.N. Rojas, RWG and
R.J. Needs, Phys. Rev. Lett. 74
1827 (1995)
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GW(ST) method

« Corrects band-gaps and band alignment
 |ntroduces finite lifetime

 GW and quantum transport:

— Thygesen JCP (2007), Darancet PRB (2007), Neaton
PRL (2007), ....

« Convenient implementation: real-space /
Imaginary-time:
— Rojas, RWG, Needs PRL (1995)

* Finite temperatures (metals): Verstraete (2008)
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2. Beyond
Conductance: I(V),
Spectral Functions

L.K. Dash, H. Ness and RWG,
J. Chem. Phys. 2010;
H. Ness, L.K. Dash and RWG,
PRB (in press)/arXiv 2010



Single-site single-mode
(SSSM) model

e SSSM system used to illustrate results
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MBPT calculations for
SSSM model

* Non-equilibrium Green's function (NEGF)
formalism, steady current

o E- ph Interaction included perturbatively

° 37 =(1+G2Nge~(1 +3GY + G'S7<G“.
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v lock .\ yHartree
(d) “e-vib T ”)] “e-vib T

FIG. 2. The (a) Fock and (b) Hartree diagrams.

(a) DX — (b) ¥ ['FH

~evihb e-vib —

FIG. 3. The (a) double exchange DX and (b) vibron propagator dressed by
the e-h bubble diagrams (dressed phonon, DPH).
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FIG. 4. Equilibrium (zero bias) spectral functions A(w) for the off-resonant
(a) electron and (b) hole transport regime. Calculations were performed with
the Fock-like electron-vibron diagram (solid line) and with both the Hartree
and Fock-like diagrams (symbols and dotted line). For the electron transport
regime the inclusion of the Hartree self-energy has no effect, but for the hole
transport regime it shifts the entire spectral function to lower energies. The
parameters are g,=+0.5(-0.5) for electron (hole) transport y,=0.21, w,
=0.3, ty g=0.15, »=0.005, and p;=pup=p=0.
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FIG. 5. Equilibrium spectral function A(w) for the resonant transport re-
gime. Calculations were performed with the Fock-like (solid line) and with
both the Hartree and Fock-like diagrams (dashed line). The parameters are
identical to those used in Figure 4, except for the value of the electron level
which is £,=0 for the resonant regime.
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FIG. 6. Nonequilibrium spectral function for the off-resonant transport re-
gime with applied bias for (a) the Fock diagram only and (b) both Fock and
Hartree diagrams. The curves are offset vertically for clarity. The applied
bias is given by the chemical potentials of the left (left-pointing arrows) and
right (right-pointing arrows) leads, respectively. The Hartree potential has a
strong effect on the peak positions. The other parameters are g,=+0.5, ¥,
=0.21, wy=0.3, 1y, z=0.15, »=0.005, and 7,=1.

THE UNIVERSITYI_.W N ¥
ETSF

L AN W | N
-0.75 -0.5 -0.25 0 0.25 0.5

T | I T |
Hartree Fock

FIG. 8. Nonequilibrium spectral function A{w) for the resonant transport
regime for different applied biases for (a) the Fock diagram only, and (b) the
Fock and Hartree diagrams. The curves are shifted vertically (+10 in the
v-axis) for clarity, with the values of the left and right chemical potentials
given by the triangular symbols, here we have a symmetric potential drop.
Adding the Hartree diagram breaks the electron-hole symmetry. The other
parameters are the same as for Fig. 6 except for £,=+0 and #,=0.5.
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Landauer vs Exact

‘:’F‘ {_1-..<..
== fo — frR)Tr [T LG TRG®
 Can Landauer v J 2w [ | |
formula be + T ((fe — T2~ (fr = INPTR) 6)
generalised to \ | __
interacting o fumt. ) (” .
case”? 2

I\ e la08  The first term in Eq. (4) and (5) looks like a Landauer-
RWG, PRB in like (LL) expression for the current,

press / arXiv

Qe
_ LL _ =€ N
e See also Meir I~ = ) /dt foF] fﬁ{t}}Teﬁ{t}
and Wingreen du |
(fr, — ' G'T'pG*
PRL 1992 fu = fr) Tr[FLG RG],
with an effective transmission
Ter(€) = Tr [T, G"T RG] (€) = Tr[tT (e)t(e)],
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Landauer vs Exact

e |n fact the full current can be written In
form similar to Landauer formula, with
renormalisation of contacts:

Do

] o ILL P
=" / 2 (fr() ~ fR@)TE[CLGTTRGY ()

with the coupling to the right contact T being renor-
malized as

Tr(w) =Tr(w)A(w), (9)

M@ =141 EO I )y sy, (o
Ao  Ness, Dash and RWG, PRB in press / arX|v
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(a) Off-resonant — from exact 1
__ LL
from Landauer I

Landauer / G‘.:x:{:[

—— from 1 =T"[G J+AI

perturh

0.2 0.4\}_0.5 08 ——- frcmLandnuerI[']'[G“]

~ —o fromexact I[Gp, |
a—--a fromexact [[Ggp, ]

&--—2 from Landauer I[']'[Gm]

v—--v from Landauer I[']'[GS{_-B_.\]

05 06 07

— from exact [

LL
— - from Landauer | FIG. 4: IETS signal d*I/dV?, normalized by G(V'), obtained
from the exact current I(V) and from the corresponding
Clanctaver | Corac Landauer-like I™“(V) term. Calculations are for the reso-
nant transport regime, intermediate electron-vibron coupling
Yo/wo = 0.65 and strong coupling to the leads. The different
approximations used to calculate the Green’s functions are
L shown in the legend (see main text for detail). The inelastic
0.5 E vibron excitation is present in the IETS signal derived from
the exact I(V) and is located around the vibron energy wo.
[t corresponds to a negative contribution to the baseline, as
expected for mostly transparent junctions (metallic-like be-
havior). Interestingly, this feature is also present in the IETS
derived from I (V') in contrast to what is obtained for the
off-resonant case. Hence, for resonant transport, it seems that

FIC. 2: D ical cond Al /dV £ h Landauer-like approach can reproduce the inelastic IETS fea-
. 2: Dynamical conductance dI/ rom the exact expres- tures at V = wp. The parameters for the calculations are

. ) - . . "
sion for tlEeLcu1ren3: I(lj) and the cmrespon.dmg Landauer-like 0 = 0,wo0 = 0.3,70 = 0.195, tor.  — 1.50,Ts, g — 0.011,7 —
current 1-(V'). Green’s functions calculations are performed 0.025, 7y = 1 ’ ’
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Collaborators

 Peter Bokes European

_ Theoretical

 Matthieu Verstraete Spectroscopy

. Facility

* \J el I \J u n g an initiative of the
<n t

e Herve Ness i iy

e Louise Dash
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Summary

* 4-point conductance ers 2007 Jcp 2009
—well defined for interacting systems
—numerically feasible in supercell geometry

— e-e Interactions via TDDFT or MBPT

 Beyond conductance: I(V), spectral
functions Jcp 2010 PRB(in press)/arXiv 2010

— Effect of interactions beyond Landauer and
Landauer-like formulae

http://www-users.york.ac.uk/~rwg3
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Challenges for QMC

e Need benchmark calculations for non-
equilibrium systems

* Conductance: linear response at iw— 0
suffices
» Better: steady current vs. bias /(V)

e Better: time-dependent j(f) given some
applied voltage V(1)
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