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The Full Configuration Interaction Method

Choose a basis of single-particle orbitals φn,
n = 1,2, . . . ,M.
Construct all possible N-electron determinants from the
corresponding set of 2M spin-orbitals.

Di = Di1,i2,...,iN =
1√
N!
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The Full Configuration Interaction Method (cont.)

Use the determinants as a basis:

|Ψ〉 =
∑

i

ci|Di〉

The coefficients ci that minimise

E({ci}) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

satisfy the matrix eigevalue problem∑
j

Hi jcj = EFCI
0 ci

where Hi j = 〈Di|Ĥ|Dj〉.



Advantages

Accurate and (in principle) systematically improvable.
Total energies often higher than fixed-node QMC energies,
but cancellation of errors seems to be more reliable.



Disadvantages

The total number of determinants is huge and rises
exponentially with system size.

For a 2D Hubbard model with 18 sites and 18 electrons,
the total number of determinants is 1.3× 108.
Diagonalizing 108 × 108 matrices is hard!

Monte Carlo methods are good at high-dimensional problems
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The Full-CI QMC Algorithm

The lowest eigenvector of the full-CI matrix eigenproblem∑
j

Hi jcj = EFCI
0 ci

may be obtained by solving the imaginary-time
Schrödinger equation

dci(t)
dt

= −
∑

j

(
Hi j − (EHF + S)δi j

)
cj(t)

= −
∑

j

(
Ki j − Sδi j

)
cj(t)

Since Hi i = 〈Di|Ĥ|Di〉 ≥ EHF, it follows that Ki i ≥ 0.



Sampling Algorithm

Imagine a population of signed walkers moving through the
configuration space, time step by time step. Suppose that
generation n includes a walker on Di. In generation n + 1, this
walker gives rise to:

1 An expected number of walkers (1− (Ki i − S)∆t) on Di.
These have the same sign as the parent.

2 An expected number of walkers |Kj i dt | on Dj.
If −Kj i > 0, these walker(s) have the same sign as their
parent
If −Kj,i < 0, they have the opposite sign

Then

〈qi〉n+1 = (1− (Ki i − S)∆t)〈qi〉n −
∑
j6=i

(Ki j∆t)〈qj〉n



Sampling Algorithm (cont.)

Rearranging gives

〈qi〉n+1 = 〈qi〉n −∆t
∑

j

(Ki j − Sδi,j)〈qj〉n

which is a first-order approximation to the imaginary-time
Schrödinger equation

dci(t)
dt

= −
∑

j

(Ki j − Sδi j)cj(t)

Thus, this walker dynamics solves the imaginary-time
Schrödinger equation. It is analogous to DMC without
importance sampling or the fixed-node approximation.



Time-Step Errors

We are iterating with

G̃ = I− (H− SI)∆t

instead of
G = exp (−(H− SI)∆t)

Fortunately, as long as ∆t ≤ 2/(Emax − S), both methods
yield the exact ground state.

There is no time-step error



The Local Energy Estimator

FCIQMC has an analogue of the local energy estimator

E(t) =
〈e−tĤD0|Ĥ|D0〉
〈e−tĤD0|D0〉

= EHF +
∑
j 6=0

cj(t)〈Dj|Ĥ|D0〉
c0(t)

= EHF +
∑
j 6=0

〈qj(t)〉Hj 0

〈q0(t)〉

Note that it is important to average qj and q0 separately,
taking the ratio afterwards:〈

qj

q0

〉
6=
〈qj〉
〈q0〉



Walker Cancellation

As with all fermion QMC methods, there is a sign problem.
Walkers of both signs appear on the same configurations
and the positive and negative populations almost cancel.

To help control this problem, positive and negative walkers
on the same determinant at the same time are cancelled
out.
Similar walker cancellation algorithms have been tried
many times in continuum DMC. They do not work very well.
The surprise in Alavi’s work was that for FCI spaces walker
cancellation works much better.



(Booth, Thom, Alavi, J. Chem. Phys. 131, 054106 (2009))



(Booth, Thom, Alavi, J. Chem. Phys. 131, 054106 (2009))



The Sign-Coherence Phase Transition

Setting S = 0, the population grows exponentially until the
numbers of positive and negative walkers on important
configurations become large enough for cancellation
(which ∝ the square of the walker population) to kick in.
The simulation then enters a plateau region, during which
the total number of walkers remains roughly fixed. The
“sign-coherence” of the population grows steadily and the
population begins to sample the ground state.
The population then begins to grow again, at which point
the shift is adjusted to prevent a population explosion.
As long as you reach the plateau before running out of
memory, you get the right ground-state energy.



Successes and Limitations of FCIQMC

Working on a small parallel machine over a period of a few
months, Alavi was able to reproduce essentially all the exact
FCI calculations ever done, to full precision. He was also able
to do some FCI calculations that had been impossible before.

But what if the critical number of walkers is too large?
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Initiator FCIQMC

i-FCIQMC
is a systematically improvable approximate approach that
works very well in many small molecules.

Divide determinants into two classes:
Initiator determinants are allowed to create new walkers on
unoccupied determinants.
Ordinary determinants are only allowed to create new
walkers on occupied determinants.
The fixed set of initiators is normally chosen according to a
CAS criterion.
If an ordinary determinant acquires a population ≥ nadd, it
becomes an initiator and stays an initiator until its
population drops below nadd.



Properties of i-FCIQMC

Helps the walker population choose a global sign and
stabilises the FCIQMC algorithm at lower walker number.
Becomes exact as:

the number of walkers→∞.
the set of initiator determinants is enlarged.

Otherwise, i-FCIQMC is biased.
In m<any cases, the bias appears to be small.



N2 Example

N2 molecule, cc-pVDZ basis

FCIQMC requires 2.7× 108 walkers — about half the FCI
space.
i-FCIQMC with a 396-determinant fixed initiator space and
nadd = 3 requires only ∼105 walkers.

(Cleland, Booth and Alavi, J. Chem. Phys. 132, 041103 (2010))



N2 Example

(Cleland, Booth and Alavi, J. Chem. Phys. 132, 041103 (2010))



Our Aims

System-size scaling?
Phase transition?
Better algorithms?

Our Aims
By studying the simplest system we can think of — the
Hubbard model — we plan to investigate these questions
as quickly and easily as possible.

(Can we do the world’s biggest Hubbard model?)
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Results

So far . . .

We have written an (i-)FCIQMC code for the Hubbard
model from scratch.
We have tested that it works and observe similar behaviour
to Alavi.
. . . except that the Hubbard model seems much less
favourable than molecules.



FCIQMC: 18-Site 18-Electron 2D Hubbard Model with U/t = 2
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(Hilbert space: 1.3× 108)



FCIQMC: 18-Site 18-Electron 2D Hubbard Model with U/t = 4
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FCIQMC: Comparsion of U/t = 2 and U/t = 4 Populations
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FCIQMC: The Plateau Region

101

102

103

104

105

106

107

108
N
w

Variable shift mode entered

FCIQMC population evolution. U/t=2

0 5000 10000 15000 20000 25000 30000
Iterations

101

102

103

104

105

N
0

(Hilbert space: 1.3× 108)



FCIQMC: 12-Site 12-Electron 1D Hubbard Model with U/t = 2

(Hilbert space: 71100, k = π/2)



FCIQMC: 12-Site 12-Electron 1D Hubbard Model with U/t = 2

(Hilbert space: 71100, k = π/2)



i-FCIQMC: 18-Site 18-Electron 2D Hubbard Model with U/t = 2
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i-FCIQMC: 18-Site 18-Electron 2D Hubbard Model with U/t = 4
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Current Work

Expectation Values

〈Ψ0|Ô|Ψ0〉 =
limt→∞

∑
i,j ci(t)Oi jcj(t)

limt→∞
∑

i cici

=
limt→∞

∑
i,j〈qi〉Oi j〈qj〉

limt→∞
∑

i〈qi〉〈qi〉

Unfortunately, we do not have enough memory to
accumulate and store all the 〈qi〉.
On-the-fly averaging is no good because

〈qi〉Oi j〈qj〉 6= 〈qiOi jqj〉



Current Work

Hellmann-Feynman Sampling

We are investigating an adaptation of Gaudoin’s
Hellmann-Feynman sampling algorithm (R. Gaudoin and
J.M. Pitarke, Phys. Rev. Lett. 99, 126406 (2007)).
FCIQMC version is not restricted to diagonal operators
(although they are easier).
We think it will work.



Current Work

Other Basis Sets

FCIQMC is not restricted to the basis of determinants of
HF orbitals we have been using so far.
We can also use a basis of determinants of local orbitals
— closer in spirit to DMC and surely more efficient in the
strongly correlated limit?
Currently very inefficient, but might combine well with the
next idea . . .



Current Work

Importance Sampling

Ψ(R, t)ΨT (R)→ ci(t)c
T
i .

Carrying a trial wavefunction around with each walker is
problematic if you have 108 walkers. Importance sampling
might not be as useful as in DMC.
But it might help establish sign coherence. If ΨT = Ψ0,
then limt→∞ ci(t)c

T
i has the same sign on every

configuration.



Current Work

System-Size Scaling

How does the critical number of walkers scale with system
size?

1x1 2x2 3x3 4x4



Current Work

Better Sign Cancellation Algorithms

Can we adapt continuum sign-cancellation techniques
developed by Kalos, Anderson, and others to improve sign
cancellation in FCIQMC?

Continuous Time Algorithms

Since set of allowed moves is finite, can sample from
Poisson distribution and move straight to next event.



Summary

FCIQMC contains almost no completely new ideas but
works much better than most of us would have guessed.
In many cases, it is already the best full-CI method
available.
Still early days; may get considerably better.

Useful for solids? Some people think so; I am sceptical.
We can’t solve the largest Hubbard model ever.
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