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Confession #1: | am not a QMC Girl



Strontium Titanate

Oxygen

Strontium

Titanium

» cubic perovskite,

« large dielectric constant paraelectric down
to OK (in pure form)

» band insulator / wide band gap
semiconductor (gap = 3.3 eV, bulk, indirect)

* INSULATOR-METAL TRANSITION via:

- substitutional doping
« La (lll) for Sr (lI)
* one electron per dopant

- doping with Oxygen vacancies
« “two electrons” per dopant
 associated with defect band




La %

Oxygen Vacancies
(Growth Vacuum)

What would happen to the transport/electronic structure if
both La dopants and Oxygen vacancies are introduced
simultaneously?
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Expect high [O,/] at low pressures, low [O,] at high pressures
La concentration seems to regulate the number of carriers at higher [O,/] (insulator-

metal transition observed)

Courtesy: W. Siemons, J. Ravichandran, R. Ramesh

At low [O,], insulator-metal transition appears suppressed



DefeCt Leve|S in the Gap = = « A Possible Explanation

UV/Vis Spectroscopy and
Photoluminesence Measurements
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* PL spectra shows evidence for the creation of defect states in the gap.

* At low [O,/], excess electrons are stuck in defect states, hence no metallic behavior is
observed.

» At high [O,], the defect states are completely filled and the conduction band is partially
filled, resulting in metallic behavior.



STO: Band Structure
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 pure STO band structure: PBE gap 1.82 eV R ->T (exp 3.3 V)

* is it possible to create a defect band in this system using intrinsic and

extrinsic defects?
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A Smattering of Defects and Voila ...

Oxygen Divacancy, 2 Strontium Vacancies, and 1 Substitutional La
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Why This Works: Simple Analysis

e La, a substitutional defect for Sr, is a shallow electron donor
Pure STO (2x2x2 Supercell)

Atomic #
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Why This Works: Simple Analysis

e La, a substitutional defect for Sr, is a shallow electron donor

e Sr vacancies are shallow acceptors (2 holes per Sr)

(Sr*= )(Ti*4)(O)s

Pure STO (2x2x4) STO (2x2x4) with Sr Vacancy




Why This Works: Simple Analysis

e La, a substitutional defect for Sr, is a shallow electron donor
e Sr vacancies are shallow acceptors (2 holes per Sr)

e Oxygen vacancies are electron donors, but they are more complicated

Pure STO (2x2x2 Supercell) STO with Oxygen Vacancy

. localized defect state around CB minimum
(S r+2 )(T|+4)(O_2)3 ... S0 each O vacancy donates less than 2

electrons



Energy (eV)

d-orbital splitting in an octahedral field
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* lowest conduction band states appear at I" (3x)

« together with the next two conduction band
levels at T', these five states are derived from the
five Ti d orbitals

* t,4 (m bonds), e, (o bonds) splitting

* removing an O stabilizes an e, level
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Why This Works: Simple Analysis

e La, a substitutional defect for Sr, is a shallow electron donor
e Sr vacancies are shallow acceptors (2 holes per Sr)
e Oxygen vacancies are electron donors, but they are more complicated

e Oxygen divacancies are electron donors and introduce a localized state
offset from the conduction band edge

Oxygen Divacancy

(] )




Why This Works: Simple Analysis

e La, a substitutional defect for Sr, is a shallow electron donor
e Sr vacancies are shallow acceptors (2 holes per Sr)
e Oxygen vacancies are electron donors, but they are more complicated

e Oxygen divacancies are electron donors and introduce a localized state
offset from the conduction band edge

Oxygen Divacancy
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Why This Works: Simple Analysis

e La, a substitutional defect for Sr, is a shallow electron donor
e Sr vacancies are shallow acceptors (2 holes per Sr)
e Oxygen vacancies are electron donors, but they are more complicated

e Oxygen divacancies are electron donors and introduce a localized state
offset from the conduction band edge

Oxygen Divacancy, 2 Strontium Vacancies, and 1 Substitutional La

- Oxygen Divacancy creates single
filled flat level in the gap and two
additional electrons in the CB

-Two Sr vacancies remove electrons
from CB and defect state

- La substitution puts a single
electron back in the defect state

- But: is this defect interplay
reasonable for a given set of growth
conditions? Defect energetics ...




Defect Behavior

oxygen growth pressure
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oxygen vacancies, strontium vacancies,
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Defect Behavior

oxygen growth pressure

Low 4oy Higr

oxygen vacancies, strontium vacancies,
oxygen divacancies titanium vacancies
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Thermodynamics of Defect Formation

#G,

. X —
sites p[ kT ]

Defect -
Concentration N

quantity of interest:

AG, =AE, —-TAS, - PAV,

P BN

compute oot neglect
- for a defect forming reaction conserving neg ec? for solid
total number of atomic nuclei and for solid h
phases
electrons phases

- using total energy electronic structure
methods (DFT) and supercell approach



Thermodynamics of Defect Formation

AE, =AE, (E..u,)

= (ED,q - ESTO) + nSrtuSr + nTiluTi + nSrluSr + qEF




Thermodynamics of Defect Formation

AE, =AE, (E..u,)
=(Ep, = Ego) +ng U, + 0yl + ng Ug, +gE,

=

strontium reservoir: ug,




Thermodynamics of Defect Formation

AE, =AE, (E,.u,)

=(Ep, = Ego) +ng U, + 0yl + ng Ug, +gE,
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M strontium reservoir: ug, €lectron reservoir: E¢

Iy Iy Ly ‘='c particle-conserving reaction for formation
of an ionized strontium vacancy




Defects Considered

explicitly: strontium vacancies, titanium vacancies, oxygen vacancies, oxygen
divacancies (in neutral and ionized state)

implicitly: lanthanum doping

AE, =AE, (E;u)=(E,, - E,)+ Y nu, +qE,

(04



Thermodynamics of Growth Conditions

Usro = U, + Up + 33U,



Thermodynamics of Growth Conditions

Usro = U, + Up + 33U,

AH(STO) = Aug, + Aw,; + 3Au,

e =Aug, +ug,” 5 Aug, <0
b

Wy = Aty + li’LTi Ay =0

Uo =Dty +—ty 5 Auy =0

2



Thermodynamics of Growth Conditions

oXygen poor

titanium o .AMSr. L Igrjowth
poor growth -10 -5

Usro = U, + Up; + 3y,

AH(STO) = Aug, + Aw,; + 3Au,

—10t

AuSr = AMS}’ + AuSrb : AMS}’ = 0
b
Wy = Aty + Uy, Ay =0

1 .
Uy = Atuo + _ALL02 ) AMO <0 strontium poor \1{

2 growth




Thermodynamics of Growth Conditions

titanium S _AMSIA | oxygen poor
poor growth ' | | growth
TiO,
TiO
Auy,
SrO

Au. + Au, = AH(TiO)
Au. +2Au, < AH(Ti0,)
Au,, + Ay, = AH(SrO)

strontium poor
growth



Thermodynamics of Growth Conditions
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Problems with DFT Supercell Calculations

Sources of Error in DFT-based supercell
calculations of total energies

— T

band gap situation supercell finite size effects
- lousy band gap - image effects for charged defects
- relative location of kohn-sham - elastic image effects

defect levels - valence band alignment issues for

charged defects

- defect-defect interaction band
dispersion effects



Band Gap and Defect Level Errors

STO in DFT-PBE _
CB o
00— .
1.82 eV Je STO in the real world
VB : |

« example: PBE gap in STO is 1.82 eV, experimental gap is 3.3 eV.

« example: oxygen divacancy is not bound in LDA calculations, Eg = -0.4 eV. However,
LDA+U calculations give Eg = 1.0 eV.



Band Gap and Defect Level Errors

STO in DFT-PBE > PPN
CB 00
> 3.3eV
1.82 eV o€ STO in the real world
VB VB \ 4

Confession #2: | wish | had a better
way to nail down these defect levels.

 corrections applied:

- open the band gap to the experimental value by an upwards shift of the CB; apply
this shift to the Kohn-Sham levels of the oxygen defect states.

- shift the oxygen vacancy and divacancy levels down by 0.1 and 0.6 eV respectively
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Charged Image Interactions (Finite Size Effects)

supercell calculation: dilute limit:
+ + +
+ + +
+
+ + +
+ + +

Makov-Payne correction to total energy applied to localized oxygen divacancy state:

2
AE(D,g) = +-9 %, 249 | O(V‘%)
280V/3 380‘/



Defect Formation Energy (eV)
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Some Results
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Some Results

Strontium
Vacancies

AEﬂf =AED,q(EF’Aua) = (ED,q - EH)+ Enatu‘a +qEF

Oxygen
\Vacancies

Oxygen Rich

Defect Formation Energy (eV)
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Fermi Energy

Dominant Defect
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Vacancy
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Fermi Energy

30

1.0

Dominant Defect

0.0
1 1 1 1

Strontium
Vacancy
(ionized)

Oxygen Vacancy
(ionized)

Oxygen
Divacancy
(ionized)

ior

10F

0D5F

DOF
1 1 1 1

path parameter A

o

path parameter A




Fermi Energy
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Conclusions

« Defect behavior can be rich and complex, even from only
a few numbers

« Sometimes we can even get reasonable agreement with
experiments

« But ... there are many open avenues for improved
modeling



Confession #3: Actually, sometimes |
wish | were a physicist.

... but | figure we can all

thank you!



Relative Defect Concentrations
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Strontium Titanate in DFT

density functional theory: a quantum mechanical theory used to
investigate the electronic structure (principally the ground state) of many
body systems.

our software package: Quantum-ESPRESSO v. 4.1
(P. Giannozzi et al., http://www.quantum-espresso.org).

example: Strontium Titanate
- DFT-PBE, TM pseudopotentials

- check for convergence with respect to plane wave cutoff and k-space sampling

Experiment Theory

Lattice 7.38 au 7.45 au
Constant

Band Gap 3.25 eV 1.82 eV (indirect)
(indirect)




O Vacancies and La in STO

» considered many Oxygen vacancy and Lanthanum defect geometries (isolated,
adjacent, etc)

» generally: Oxygen induced defect states become more localized when Lanthanum is
introduced

» however, defect states are always filled

How might a half-filled
defect band arise?

..Oxygen divacancies!







O Vacancies and La in STO

Pure STO (2x2x2 Supercell)

<

michiefeiitantboth defects
Luo, Duan, Louie, and Cohen, Phys. Rev. B 70 (2004).
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O DiVacancies and La in STO

pure STO .

Cuong, Lee, Choi, Ahn, Han, Lee,
Phys. Rev. Lett. 98 (2007).
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Sr or Ti Vacancies
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« Carrier density at low growth pressures should be governed by La content

« At high growth pressures, the excess Oxygen during growth manifests itself by the
introduction of Sr or Ti vacancies in the STO

» These vacancies compensate the extra charge introduced by the Lanthanum,
supressing the insulator-metal transition



les and La in STO

Sr Vacanc

Pure STO (2x2x4)

STO (2x2x4) with Sr Va
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