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Geometry optimization in QMC

I Long standing challenge in QMC
I Typically use DFT or experiment, but

I Transition metals
I Weak binding/van der Waals
I Excited states

I Much work on forces1 and correlated sampling2

Our goal:
I Find precise minima in the presence of noise

1Assaraf & Caffarel, Chiesa et al., Rappe group, Needs group
2Filippi & Umrigar, Pierleoni & Ceperley
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Deterministic minimization vs stochastic

Deterministic region

Stochastic region

I In the deterministic
region, can use
normal search
methods

I In the stochastic
region, noise
dominates, must use
different algorithms

Most work concentrates on reducing the size of the stochastic
region. Notable exception: stochastic gradient approximation
(Monro in 50’s, Sorella et al. in 90’s)
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Computational costs to reduce size of the
stochastic region

I E = αδx2

I Total energy: εx ∝
√

εE ∝ T−1/4

I Forces: εx ∝ εF ∝ T−1/2

I Fitting not quite so simple, but: εx ∝ T−1/2

I Prefactors are important: if αε costs α2

Really want to use forces or fitting; otherwise the stochastic
region will be huge for no good reason.
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Why operate in the stochastic region?

I We often don’t know a priori how big the stochastic region
will be.

I Can do multiple deterministic runs, but that’s somewhat
heuristic and unreasonably expensive

I Cost to reduce errors is ∝ T−1/2

Why am I not using forces?

I Original answer: Forces in QMC are hard!
I More nuanced answer:

I’ll talk in a general way about adding forces here and
there.



Why operate in the stochastic region?

I We often don’t know a priori how big the stochastic region
will be.

I Can do multiple deterministic runs, but that’s somewhat
heuristic and unreasonably expensive

I Cost to reduce errors is ∝ T−1/2

Why am I not using forces?

I Original answer: Forces in QMC are hard!
I More nuanced answer:

I’ll talk in a general way about adding forces here and
there.



Why operate in the stochastic region?

I We often don’t know a priori how big the stochastic region
will be.

I Can do multiple deterministic runs, but that’s somewhat
heuristic and unreasonably expensive

I Cost to reduce errors is ∝ T−1/2

Why am I not using forces?

I Original answer: Forces in QMC are hard!
I More nuanced answer:

I’ll talk in a general way about adding forces here and
there.



Advantage of fitting

Deterministic region

Stochastic region

I Fitting gives uncertainty of .003 Å
I Straight energy differences(estimated): 5000x more

expensive
I Forces3(estimated): 20x more expensive

Drastic decrease in the size of the stochastic region!
=⇒ big gain in efficiency!
But difficult to apply to many dimensions.

3Assaraf & Caffarel, JCP 113 4028



A stochastic process of line minimizations

1. Guess the minimum x(0).
Define δx(0) = x(0) − m.

2. Near the minimum,
E(x) = E0 + δxTMδx.

3. minimize along direction i:
δx(1)
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Properties of the sequence
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I Conditions
I Hessian is diagonally dominant:

∑
j6=i

∣∣∣Mij

Mii

∣∣∣ < 1,∀i
(sufficient, but not necessary)

I Noise is not biased: 〈χ〉 = 0

I Reduces to a geometric series
I Finite autocorrelation time
I Average of points equals the exact minimum
I Variance is finite
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Scaling analysis

I Each pass is O(NDOF)

Npass ∝
σ2
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I Scaling we see is dependent on the matrix elements of the
Hessian

I For a diagonalized matrix, scaling is O(NDOF)



Choosing the search directions

I Intuition
I Phonons from DFT
I Powell/Brent’s method
I A few other unexplored ideas..

Traditional determistic methods methods will not work in the
stochastic region.
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Method summary

1. Use determistic methods to get near the minimum and find
search directions

2. Loop through directions
I Evaluate energy along a line
I Fit to find minimum

3. Add new point to average, go back to 2.



Applications: calculation details
I Single determinant trial function from GAMESS with

gaussian basis set, pseudopotentials4

I Two or three-body Jastrow factor
I Diffusion Monte Carlo as implemented in QWalk

(www.qwalk.org)
I Bayesian fitting framework5

I Modified Morse potential for fitting

E(x) = E0 + a(1− exp(−b(x− x0)))
2
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4Burkatzki et al. JCP 126, 234105
5Wagner & Mitas, JCP 126, 034105



Line minimization example: Methane

I Each line represents a coordinate
I No special direction choices



H2O-OH− complex

I Traditional picture (structure A)
I Hartree-Fock, MP2

I Centrosymmetric minimum?
(structure B)

I LDA, BLYP, PBE

I What is the actual ground state structure?
I And what is the barrier to exchange hydrogen?
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Results

O' O

Method O-O’ O’-H Structure type
LDA 2.448 1.224 B
PBE 2.470 1.235 B
MP2 2.469 1.123 A
DMC 2.491(2) 1.111(3) A
DMC* 2.469(3) 1.235(2) B



H2O-OH− complex

Minimization method
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Structure A Structure B

I DMC gets different symmetry
from GGA/LDA geometries

I MP2 structure is right
symmetry, but high energy

I DMC geometry optimization
important for finding real
minima

I The barrier is quite small:
∼0.01 eV!



Conclusion

I New way to obtain precise minimum energy geometries
with QMC

I Takes advantage of many low-precision calculations and
only energies

I Works for many dimensions (have done nine)
I In some cases, DMC minimum can differ significantly from

mean-field theories

Funded by the National Science Foundation



Conclusion

I New way to obtain precise minimum energy geometries
with QMC

I Takes advantage of many low-precision calculations and
only energies

I Works for many dimensions (have done nine)
I In some cases, DMC minimum can differ significantly from

mean-field theories

Funded by the National Science Foundation



Thoughts on adding forces

I An extra O(NDOF) information!
I Can use it to determine search directions and decrease

cost of fits
I Could construct a conjugate-gradients type of technique

that’s stochastically sound
I Still get a huge prefactor improvement for fitting
I Need to be careful about cross-correlations between

different components
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Thanks, Mike!


