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e Only Variational Monte Carlo considered (for now...)

e Monte Carlo can be implemented for any choice of sample distribution - P = ¢2 IS just convenient
e When is the CLT valid?

e \What is the optimum choice of sample distribution?

e What is an efficient choice of sample distribution?

e Results for isolated atom/diatomic molecules - comparison of ‘optimum’, ‘efficient’, and ‘standard’

sampling
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VMC and ‘Standard’ Sampling

e For P = 1)
1 N
ESt Etot :NZ

e CLT = distributed Normally with @

_ SR, L[y (B - )" dR
P= " rgear N [2dR
e Estimates are available:
=LV ER) P S (R )
H=N & T NN &R T

e Total energy is a sample drawn from a Normal distribution whose shape we can estimate,

— The error is controlled if the CLT is valid

& We also require that the variance is finite, and [V is large enough
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VMC and General Sampling

e For P = 1) /w, what is the distribution of

ol = 50

e \We cannot normalise wrt the sum of weights and use the CLT, ie

B # %ngEL,i ke N.(]\i— 0 > (wiEL(R;) — i)’

Because:
e CLT is true for sums of independent, identically distributed random variables
o wi /(wy + wo) is correlated with ws /(w1 + ws) => not independent

e wy /(wy + wy) has a different distribution to wy /(wy 4+ wy + w3) = not identically distributed

e There is no reason for this to provide a good approximation

Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)
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VMC and General Sampling
e What is distribution of (w Ej, W) ?
e Bivariate Central Limit Theorem

An example: N=1

0.2 0.4 0.6 0.8 1

e 1000 estimates of (w £, W) each constructed from 1 sample of R
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VMC and General Sampling

e What is distribution of (w Ej, W) ?
e Bivariate Central Limit Theorem

An example: N=1000
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e 1000 estimates of (w £, W) each constructed from 1000 samples of R

— Bivariate Normal distribution: mean is a vector + Covariance is a matrix
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VMC and General Sampling
e Convert the distribution of (y, x) to a distribution of 3/ /x using Fiellers theorem ?

o Est,. [Fyy] is distrbuted Normally with

_ JY’ELdR Cﬁzplf¢%Mdeww%EL—uPdR
TR TN [ V2R

e Estimates are available:

> w;Er(Ry) 9 N Yw;(EL(R;) — ﬁ)2

=5, 2 TN (> w:)?

e 52 = (sample variance) /N
e These equations do not follow from the usual (univariate) Central Limit Theorem
e Zero Variance Principle is still valid - for exact 1) = = 0

— The error is controlled if the bivariate CLT is valid and (w) # 0

? We also require that the covariance is finite, (w) 7 0, and IV is large enough
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VMC and General Sampling
We already do generalised sampling:
e Correlated sampling in VMC optimisation

e Population control in weighted DMC

BUT we can choose w (equivalently P) specifically to improve performace and statistics:

e |t changes the size of the error

e |t can reinstate the CLT where it is invalid for standard sampling
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VMC Total Energy estimate: standard sampling

e P(E;) ox 1/x* = CLT is valid for local energy
e For correlated sampling CLT is not valid
e For most estimates, CLT is not valid
e Standard error, o, is fixed for each system
e Can we improve on this?
Consider two possibilities:
1) Optimum sampling

2) Efficient Sampling
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Optimum sampling
e What is the lowest statistical estimate possible for N samples?

e Minimise o2 wrt function w (or P)

do?

ST — 0, where
w

e Solve

1 [¢?/wdR [ w?(Ey — p)*dR
N [ Y2dR)?

0'2:
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Optimum Sampling

e For given (@D, [:l, N) lowest statistical error provided by

1
w=-—"—+— o P, =v*E —
’EL _ M‘ pt ‘ L :u|
e This gives the optimum error
1 2
Oopt — N% /'QD ‘EL _Etot’dR
1
= MAD/Nz

e Compare with standard sampling error

1/2

1
Ostd = \/—N [/ ¢2(EL — Etot)2dR
— sD/N:

e For any calculation we can estimate a lower limit for the error
e Non-statistical estimates can have higher accuracy (eg one sample at £; = F, ;)

e Cannot use it =~ & (CLT becomes invalid)
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Optimum Sampling
e Use a random estimate of p
e Normally distributed with mean,variance F/, €

e Minimise the mean value of o2

1
(EL — Eo)? + ¢

w =

or P,y = 2 [(Ep — Ep)? + €2

e (F), €) does not bias estimates
e (F)y, €) does not have to be accurate
® ¢ — 00 gives standard sampling

e Good starting values are (Egr, EFgr/10)
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Efficient Sampling
e Often the wavefunction is complex and involves many flops to evaluate
e Markovian chain using Metropolis algorithm has long correlation times
e Expensive for complex wavefunctions/long correlation times (eg atoms)

e Less expensive for simple wavefunctions/short correlation times (eg HEG)

— Reduce computational cost of random walk between samples of £,
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Efficient Sampling

e Choose a simplified distribution, P,;,,, by excluding Jastrow, Backflow, Multideterminents . . .
e Make sure the CLT remains valid for the accompanying total energy estimate

Example: Use a HF determinant, with an arbitrary power:

Piim = |Do(R)[?

Analysis of the distribution at the nodal surface:
Pum(EL) ~ 1/22+1/P =

e CLT invalid forp > 1

e error increased by an order of magnitude for p < 1

... hot good enough
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Efficient Sampling

Desirable features of Py;,,,:

o Est,. [F;y] is Normal

e P, is computationally cheap

e ..., that is not too far from optimum
® Reproduces exponental tails of ¢2

e Has no nodal surface
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Efficient Sampling

Final choice:

Psim — ‘DOP -+ ‘Dl‘Q

e No singularites introduced in averaged quantity — CLT is valid
e Cheap to calculate (few determinants, no Jastrow, no Backflow)
e Accurate tails

e P, # 0 on nodal surface

e ..., = 0 on coalescence planes only
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E~vic for an isolated O atom

24h on processors desktop:

Sampling E/(a.u.) N
std -75.0610(3) 2,246,400
opt 75.0610(7) 230,400
sopt -75.0607(1) 19,968,000
sim -75.06058(5) 78,720,000

e Efficient sampling reduces error by x%

e Reduces cpu-hours by X 4—19

e Equivalent to a Moore’s-law-timespan of 8 years
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Efficient optimisation
o Evie = Eo + evie + €opt
e Details of particular methods unimportant - we use matrix energy minimisation
e Draw a random curve from a random curve generator’ with initial wavefunction parameters {ozim-t}
e Find an improved set of parameters { &, } - @ sample value of a random variable
e |terate...

e \What is the random error due to the random position of the minimum?
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Efficient optimisation

Exact curve, with minimum at «
o, L. 2
f=1f +§f (0 —ag)” + ...

Available is a random curve (ie (f) = f)

1
f=fO 0 (o —ag) + §f(2)(04 —ag)’ 4 ...

o (1)
e Random minimum at ag = g — ]‘;—2)

® a is Normal if (f(1), f(2)) are bivariate Normal

1 [f7?
Copt = 2 []C(—Q)] <f(2)>

® ¢, distributed as square of Normal random variable
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Efficient optimisation

For Npamm parameters, diagonalise f(2)

° X?Vpamm distribution of order Npgrqm

e — normal for large Nyqram

e Mean X Nparam /N

e Variance o< (]\fpaf,aam/]\f)2

— Offset error proportional to number of parameters in the trial wavefunction
— Requires (f(1>, f(2)) to be normal - not true for standard sampling

So ... non-standard sampling + average parameters
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FEgq/(a.u.)
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Standard optimisation - O atom, 24h
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Egmp/(a.u.)

Efficient optimisation - O atom, 24h
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1st row atoms

e ~ 500 dets. Jastrow+Backflow

e 24h runtime

Evuce Evvro(prev) Exact
Li | -7.478052(2) -7.47799(1) -7.47806032
Be | -14.667243(3) -14.66716(2) -14.66736
B | -24.65329(1) -24.65254(4) -24.65391
C | -37.84361(2) -37.84199(7)  -37.8450
N | -54.58641(4) -54.5840(1)  -54.5892
O | -75.06058(5) -75.0566(2)  -75.0673
F | -90.72623(8) -99.7220(2)  -99.7339
Ne | -128.9299(1) -128.9246(4) -128.9376

(prev) Brown MD et al. J.

Chem. Phys. 126,

224110 (2007)



1st row diatomic molecules

e ~ 100 dets., numerical orbitals, Jastrow+Backflow

e 0.5h runtime

Evie Ev vio(prev) Exact
Li2 | -14.9839(2) -14.99229(5)  -14.9951
Cc2 | -75.881(1) -75.8862(2)  -75.9265
N2 | -109.494(2) -109.4851(3) -109.5421
Ne2 | -257.854(3) -257.80956(2) -257.8753

(prev) Toulouse F and Umrigar CJ, J. Chem. Phys. 128, 174101 (2008)
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Conclusions
e P = /% is an ad-hoc choice
e This choice introduces singularities and non-Normal distributions that don’t have to be there
e Other P is possible
e Optimum and efficient choice can be made that improve on the standard method
e A simpler P can provide a Normal error for all estimates

e A simpler P can allow considerably larger sample sizes
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