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• Only Variational Monte Carlo considered (for now...)

• Monte Carlo can be implemented for any choice of sample distribution - P = ψ2 is just convenient

• When is the CLT valid?

• What is the optimum choice of sample distribution?

• What is an efficient choice of sample distribution?

• Results for isolated atom/diatomic molecules - comparison of ‘optimum’, ‘efficient’, and ‘standard’

sampling
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VMC and ‘Standard’ Sampling

• For P = ψ2

Estr [Etot] =
1

N

N
∑

i=1

EL(Ri)

• CLT ⇒ distributed Normally with a

µ =

∫

ψ2ELdR
∫

ψ2dR
, σ2 =

1

N

∫

ψ2 (EL − µ)2 dR
∫

ψ2dR

• Estimates are available:

µ =
1

N

N
∑

i=1

EL(Ri) , σ2 =
1

N.(N − 1)

N
∑

i=1

(EL(Ri) − µ)2

• Total energy is a sample drawn from a Normal distribution whose shape we can estimate,

→ The error is controlled if the CLT is valid
a We also require that the variance is finite, and N is large enough
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VMC and General Sampling

• For P = ψ2/w, what is the distribution of

Estr [Etot] =

∑

w(Ri)EL(Ri)
∑

w(Ri)

• We cannot normalise wrt the sum of weights and use the CLT, ie

µ 6= 1

N

∑

w′

iEL,i , σ2 6= 1

N.(N − 1)

∑

(w′

iEL(Ri) − µ)
2

Because:

• CLT is true for sums of independent, identically distributed random variables

• w1/(w1 + w2) is correlated with w2/(w1 + w2) ⇒ not independent

• w1/(w1 + w2) has a different distribution to w1/(w1 + w2 + w3) ⇒ not identically distributed

• There is no reason for this to provide a good approximation

Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)
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VMC and General Sampling

• What is distribution of (wEl, w) ?

• Bivariate Central Limit Theorem

An example: N=1

〈w〉1

〈w
E

L
〉 1

10.80.60.40.2

-1

-2

-3

-4

-5

• 1000 estimates of (wEL, w) each constructed from 1 sample of R
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VMC and General Sampling

• What is distribution of (wEl, w) ?

• Bivariate Central Limit Theorem

An example: N=1000

〈w〉1000

〈w
E

L
〉 10

0
0

0.820.780.76

-3.8

-3.9

-4

-4.1

• 1000 estimates of (wEL, w) each constructed from 1000 samples of R

→ Bivariate Normal distribution: mean is a vector + Covariance is a matrix
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VMC and General Sampling

• Convert the distribution of (y, x) to a distribution of y/x using Fiellers theorem a

• Estr [Etot] is distrbuted Normally with

µ =

∫

ψ2ELdR
∫

ψ2dR
, σ2 =

1

N

∫

ψ2/wdR
∫

wψ2(EL − µ)2dR

[
∫

ψ2dR]2

• Estimates are available:

µ =

∑

wiEL(Ri)
∑

wi

, σ2 =
N

N − 1

∑

w2
i (EL(Ri) − µ)2

(
∑

wi)
2

• σ2 6= (sample variance)/N

• These equations do not follow from the usual (univariate) Central Limit Theorem

• Zero Variance Principle is still valid - for exact ψ ⇒ σ = 0

→ The error is controlled if the bivariate CLT is valid and 〈w〉 6= 0

a We also require that the covariance is finite, 〈w〉 6= 0, and N is large enough
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VMC and General Sampling

We already do generalised sampling:

• Correlated sampling in VMC optimisation

• Population control in weighted DMC

BUT we can choose w (equivalently P ) specifically to improve performace and statistics:

• It changes the size of the error

• It can reinstate the CLT where it is invalid for standard sampling
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VMC Total Energy estimate: standard sampling

• P (EL) ∝ 1/x4 ⇒ CLT is valid for local energy

• For correlated sampling CLT is not valid

• For most estimates, CLT is not valid

• Standard error, σ2, is fixed for each system

• Can we improve on this?

Consider two possibilities:

1) Optimum sampling

2) Efficient Sampling
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Optimum sampling

• What is the lowest statistical estimate possible for N samples?

• Minimise σ2 wrt function w (or P )

• Solve δσ2

δw
= 0, where

σ2 =
1

N

∫

ψ2/wdR
∫

wψ2(EL − µ)2dR

[
∫

ψ2dR]2
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Optimum Sampling

• For given (ψ, Ĥ, N) lowest statistical error provided by

w =
1

|EL − µ| or Popt = ψ2|EL − µ|

• This gives the optimum error

σopt =
1

N
1
2

∫

ψ2|EL − Etot|dR

= MAD/N
1
2

• Compare with standard sampling error

σstd =
1√
N

[
∫

ψ2(EL − Etot)
2dR

]1/2

= S.D./N
1
2

• For any calculation we can estimate a lower limit for the error

• Non-statistical estimates can have higher accuracy (eg one sample at El = Etot)

• Cannot use µ ≈ µ (CLT becomes invalid)
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Optimum Sampling

• Use a random estimate of µ

• Normally distributed with mean,variance E0, ǫ
2

• Minimise the mean value of σ2

w =
1

[(EL − E0)2 + ǫ2]
1
2

or Popt = ψ2 [(EL − E0)
2 + ǫ2]

1
2

• (E0, ǫ) does not bias estimates

• (E0, ǫ) does not have to be accurate

• ǫ → ∞ gives standard sampling

• Good starting values are (EHF , EHF /10)
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Efficient Sampling

• Often the wavefunction is complex and involves many flops to evaluate

• Markovian chain using Metropolis algorithm has long correlation times

• Expensive for complex wavefunctions/long correlation times (eg atoms)

• Less expensive for simple wavefunctions/short correlation times (eg HEG)

→ Reduce computational cost of random walk between samples of EL
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Efficient Sampling

• Choose a simplified distribution, Psim by excluding Jastrow, Backflow, Multideterminents . . .

• Make sure the CLT remains valid for the accompanying total energy estimate

Example: Use a HF determinant, with an arbitrary power:

Psim = |D0(R)|p

Analysis of the distribution at the nodal surface:

Psim(EL) ∼ 1/x2+1/p ⇒
• CLT invalid for p ≥ 1

• error increased by an order of magnitude for p < 1

. . . not good enough
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Efficient Sampling

Desirable features of Psim:

• Estr [Etot] is Normal

• Psim is computationally cheap

• Psim that is not too far from optimum

• Reproduces exponental tails of ψ2

• Has no nodal surface
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Efficient Sampling

Final choice:

Psim = |D0|2 + |D1|2

• No singularites introduced in averaged quantity → CLT is valid

• Cheap to calculate (few determinants, no Jastrow, no Backflow)

• Accurate tails

• Psim 6= 0 on nodal surface

• Psim = 0 on coalescence planes only
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EVMC for an isolated O atom

24h on processors desktop:

Sampling E/(a.u.) N

std -75.0610(3) 2,246,400

opt -75.0610(7) 230,400

sopt -75.0607(1) 19,968,000

sim -75.06058(5) 78,720,000

• Efficient sampling reduces error by ×1
7

• Reduces cpu-hours by × 1
49

• Equivalent to a Moore’s-law-timespan of 8 years
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Efficient optimisation

• EV MC = E0 + ǫV MC + ǫopt

• Details of particular methods unimportant - we use matrix energy minimisation

• Draw a random curve from a ’random curve generator’ with initial wavefunction parameters {αinit}
• Find an improved set of parameters {αmin} - a sample value of a random variable

• Iterate...

• What is the random error due to the random position of the minimum?
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Efficient optimisation

Exact curve, with minimum at α0

f = f0 +
1

2
f2(α − α0)

2 + . . .

Available is a random curve (ie 〈f〉 = f )

f = f
(0) + f

(1).(α − α0) +
1

2
f
(2)(α − α0)

2 + . . .

• Random minimum at a0 = α0 − f
(1)

f(2)

• a0 is Normal if (f(1), f(2)) are bivariate Normal

ǫopt =
1

2

[

f
(1)

f(2)

]2

〈f(2)〉

• ǫopt distributed as square of Normal random variable
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Efficient optimisation

For Nparam parameters, diagonalise f
(2)

• χ2
Nparam

distribution of order Nparam

• → normal for large Nparam

• Mean ∝ Nparam/N

• Variance ∝ (Nparam/N)2

→ Offset error proportional to number of parameters in the trial wavefunction

→ Requires (f(1), f(2)) to be normal - not true for standard sampling

So . . . non-standard sampling + average parameters
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Standard optimisation - O atom, 24h

iteration

E
st

d
/(

a
.u

.)

20151050

-75.054

-75.056

-75.058

-75.06

-75.062

-75.064
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Efficient optimisation - O atom, 24h

iteration

E
sm

p
/(

a
.u

.)

20151050

-75.054

-75.056

-75.058

-75.06

-75.062

-75.064

Page 23



1st row atoms

• ∼ 500 dets. Jastrow+Backflow

• 24h runtime

EV MC EV MC (prev) Exact

Li -7.478052(2) -7.47799(1) -7.47806032

Be -14.667243(3) -14.66716(2) -14.66736

B -24.65329(1) -24.65254(4) -24.65391

C -37.84361(2) -37.84199(7) -37.8450

N -54.58641(4) -54.5840(1) -54.5892

O -75.06058(5) -75.0566(2) -75.0673

F -99.72623(8) -99.7220(2) -99.7339

Ne -128.9299(1) -128.9246(4) -128.9376

(prev) Brown MD et al. J. Chem. Phys. 126, 224110 (2007)
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1st row diatomic molecules

• ∼ 100 dets., numerical orbitals, Jastrow+Backflow

• 0.5h runtime

EV MC EV MC (prev) Exact

Li2 -14.9839(2) -14.99229(5) -14.9951

C2 -75.881(1) -75.8862(2) -75.9265

N2 -109.494(2) -109.4851(3) -109.5421

Ne2 -257.854(3) -257.80956(2) -257.8753

(prev) Toulouse F and Umrigar CJ, J. Chem. Phys. 128, 174101 (2008)
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Conclusions

• P = ψ2 is an ad-hoc choice

• This choice introduces singularities and non-Normal distributions that don’t have to be there

• Other P is possible

• Optimum and efficient choice can be made that improve on the standard method

• A simpler P can provide a Normal error for all estimates

• A simpler P can allow considerably larger sample sizes
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