Optimum and Efficient sampling for Variational Quantum Monte Carlo

J.R. Trail and R. Maezono

School of Information Science, JAIST, Nomi, Ishikawa 923-1292, Japan

July 2009

- Only Variational Monte Carlo considered (for now...)
- ullet Monte Carlo can be implemented for any choice of sample distribution $P=\psi^2$ is just convenient
- When is the CLT valid?
- What is the *optimum* choice of sample distribution?
- What is an *efficient* choice of sample distribution?
- Results for isolated atom/diatomic molecules comparison of 'optimum', 'efficient', and 'standard' sampling

VMC and 'Standard' Sampling

 $\bullet \ {\rm For} \ P = \psi^2$

$$\mathsf{Est}_r\left[E_{tot}\right] = \frac{1}{N} \sum_{i=1}^{N} E_L(\mathsf{R}_i)$$

CLT ⇒ distributed Normally with ^a

$$\mu = \frac{\int \psi^2 E_L d\mathbf{R}}{\int \psi^2 d\mathbf{R}} \quad , \quad \sigma^2 = \frac{1}{N} \frac{\int \psi^2 (E_L - \mu)^2 d\mathbf{R}}{\int \psi^2 d\mathbf{R}}$$

• Estimates are available:

$$\overline{\mu} = \frac{1}{N} \sum_{i=1}^{N} E_L(\mathbf{R}_i)$$
 , $\overline{\sigma}^2 = \frac{1}{N \cdot (N-1)} \sum_{i=1}^{N} (E_L(\mathbf{R}_i) - \overline{\mu})^2$

- Total energy is a sample drawn from a Normal distribution whose shape we can estimate,
- → The error is **controlled** if the CLT is **valid**

 $^{^{\}mathrm{a}}$ We also require that the variance is finite, and N is large enough

ullet For $P=\psi^2/w$, what is the distribution of

$$\mathsf{Est}_r [E_{tot}] = \frac{\sum w(\mathsf{R}_i) E_L(\mathsf{R}_i)}{\sum w(\mathsf{R}_i)}$$

• We cannot normalise wrt the sum of weights and use the CLT, ie

$$\overline{\mu} \neq \frac{1}{N} \sum w_i' E_{L,i}$$
 , $\overline{\sigma}^2 \neq \frac{1}{N.(N-1)} \sum (w_i' E_L(\mathbf{R}_i) - \overline{\mu})^2$

Because:

• CLT is true for sums of *independent*, *identically distributed* random variables

• $w_1/(w_1+w_2)$ is correlated with $w_2/(w_1+w_2)$ \Rightarrow not independent

• $w_1/(w_1+w_2)$ has a different distribution to $w_1/(w_1+w_2+w_3)$ \Rightarrow not identically distributed

• There is no reason for this to provide a good approximation

Trail JR, Phys. Rev. E. 77, 016703,016704 (2008)

- ullet What is distribution of $(\overline{wE_l},\overline{w})$?
- Bivariate Central Limit Theorem

An example: N=1

 \bullet 1000 estimates of $(\overline{wE_L},\overline{w})$ each constructed from 1 sample of R

- ullet What is distribution of $(\overline{w}\overline{E_l},\overline{w})$?
- Bivariate Central Limit Theorem

An example: N=1000

- \bullet 1000 estimates of $(\overline{wE_L},\overline{w})$ each constructed from 1000 samples of R
 - → Bivariate Normal distribution: mean is a **vector** + Covariance is a **matrix**

- ullet Convert the distribution of (y,x) to a distribution of y/x using Fiellers theorem ^a
- ullet Est $_r\left[E_{tot}
 ight]$ is distrbuted Normally with

$$\mu = \frac{\int \psi^2 E_L d\mathbf{R}}{\int \psi^2 d\mathbf{R}} \quad , \quad \sigma^2 = \frac{1}{N} \frac{\int \psi^2 / w d\mathbf{R} \int w \psi^2 (E_L - \mu)^2 d\mathbf{R}}{\left[\int \psi^2 d\mathbf{R}\right]^2}$$

• Estimates are available:

$$\overline{\mu} = \frac{\sum w_i E_L(\mathbf{R}_i)}{\sum w_i} \quad , \quad \overline{\sigma}^2 = \frac{N}{N-1} \frac{\sum w_i^2 \left(E_L(\mathbf{R}_i) - \overline{\mu}\right)^2}{\left(\sum w_i\right)^2}$$

- $\bullet \ \overline{\sigma}^2 \neq (\text{sample variance})/N$
- These equations do not follow from the usual (univariate) Central Limit Theorem
- ullet Zero Variance Principle is still valid for exact $\psi \Rightarrow \overline{\sigma} = 0$
- \rightarrow The error is ${\bf controlled}$ if the bivariate CLT is ${\bf valid}$ and $\langle w \rangle \neq 0$

 $^{^{\}mathrm{a}}$ We also require that the covariance is finite, $\langle w \rangle \neq 0$, and N is large enough

We already do generalised sampling:

- Correlated sampling in VMC optimisation
- Population control in weighted DMC

BUT we can choose w (equivalently P) specifically to improve performace and statistics:

- It changes the size of the error
- It can reinstate the CLT where it is invalid for standard sampling

VMC Total Energy estimate: standard sampling

- ullet $P(E_L) \propto 1/x^4 \Rightarrow$ CLT is valid for local energy
- For correlated sampling CLT is not valid
- For most estimates, CLT is not valid
- ullet Standard error, σ^2 , is fixed for each system
- Can we improve on this?

Consider two possibilities:

- 1) Optimum sampling
- 2) Efficient Sampling

Optimum sampling

- ullet What is the lowest statistical estimate possible for N samples?
- Minimise σ^2 wrt function w (or P)
- ullet Solve $rac{\delta\sigma^2}{\delta w}=0$, where

$$\sigma^2 = \frac{1}{N} \frac{\int \psi^2 / w d\mathbf{R} \int w \psi^2 (E_L - \mu)^2 d\mathbf{R}}{\left[\int \psi^2 d\mathbf{R}\right]^2}$$

Optimum Sampling

ullet For given (ψ,\hat{H},N) lowest statistical error provided by

$$w = \frac{1}{|E_L - \mu|} \quad \text{or} \quad P_{opt} = \psi^2 |E_L - \mu|$$

• This gives the optimum error

$$\sigma_{opt} = \frac{1}{N^{\frac{1}{2}}} \int \psi^2 |E_L - E_{tot}| d\mathbf{R}$$
$$= \text{MAD}/N^{\frac{1}{2}}$$

Compare with standard sampling error

$$\sigma_{std} = \frac{1}{\sqrt{N}} \left[\int \psi^2 (E_L - E_{tot})^2 d\mathbf{R} \right]^{1/2}$$
$$= \text{S.D.}/N^{\frac{1}{2}}$$

- For any calculation we can estimate a lower limit for the error
- ullet Non-statistical estimates can have higher accuracy (eg one sample at $E_l=E_{tot}$)
- ullet Cannot use $\mu pprox \overline{\mu}$ (CLT becomes invalid)

Optimum Sampling

- ullet Use a random estimate of μ
- ullet Normally distributed with mean,variance E_0,ϵ^2
- ullet Minimise the mean value of σ^2

$$w = \frac{1}{[(E_L - E_0)^2 + \epsilon^2]^{\frac{1}{2}}} \quad \text{or } P_{opt} = \psi^2 \left[(E_L - E_0)^2 + \epsilon^2 \right]^{\frac{1}{2}}$$

- ullet (E_0,ϵ) does not bias estimates
- ullet (E_0,ϵ) does not have to be accurate
- $\bullet~\epsilon \rightarrow \infty$ gives standard sampling
- ullet Good starting values are $(E_{HF},E_{HF}/10)$

- Often the wavefunction is complex and involves many flops to evaluate
- Markovian chain using Metropolis algorithm has long correlation times
- Expensive for complex wavefunctions/long correlation times (eg atoms)
- Less expensive for simple wavefunctions/short correlation times (eg HEG)
- ightarrow Reduce computational cost of random walk *between* samples of E_L

- ullet Choose a simplified distribution, P_{sim} by excluding Jastrow, Backflow, Multideterminents . . .
- Make sure the CLT remains valid for the accompanying total energy estimate

Example: Use a HF determinant, with an arbitrary power:

$$P_{sim} = |D_0(\mathbf{R})|^p$$

Analysis of the distribution at the nodal surface:

$$P_{sim}(E_L) \sim 1/x^{2+1/p} \Rightarrow$$

- ullet CLT invalid for $p \geq 1$
- ullet error increased by an order of magnitude for p < 1
- ... not good enough

Desirable features of P_{sim} :

- ullet Est $_r\left[E_{tot}
 ight]$ is Normal
- ullet P_{sim} is computationally cheap
- ullet P_{sim} that is not too far from optimum
- \bullet Reproduces exponental tails of ψ^2
- Has no nodal surface

Final choice:

$$P_{sim} = |D_0|^2 + |D_1|^2$$

- ullet No singularites introduced in averaged quantity o CLT is valid
- Cheap to calculate (few determinants, no Jastrow, no Backflow)
- Accurate tails
- ullet $P_{sim}
 eq 0$ on nodal surface
- \bullet $P_{sim}=0$ on coalescence planes only

$E_{\rm VMC}$ for an isolated O atom

24h on processors desktop:

Sampling	E/(a.u.)	N
std	-75.0610(3)	2,246,400
opt	-75.0610(7)	230,400
sopt	-75.0607(1)	19,968,000
sim	-75.06058(5)	78,720,000

- ullet Efficient sampling reduces error by $imes rac{1}{7}$
- ullet Reduces cpu-hours by $imes rac{1}{49}$
- Equivalent to a Moore's-law-timespan of 8 years

Efficient optimisation

- $\mathsf{E}_{VMC} = E_0 + \epsilon_{VMC} + \epsilon_{opt}$
- Details of particular methods unimportant we use matrix energy minimisation
- ullet Draw a random curve from a 'random curve generator' with initial wavefunction parameters $\{lpha_{init}\}$
- \bullet Find an improved set of parameters $\{\alpha_{min}\}$ a sample value of a random variable
- Iterate...
- What is the random error due to the random position of the minimum?

Efficient optimisation

Exact curve, with minimum at α_0

$$f = f^0 + \frac{1}{2}f^2(\alpha - \alpha_0)^2 + \dots$$

Available is a random curve (ie $\langle f \rangle = f$)

$$f = f^{(0)} + f^{(1)} \cdot (\alpha - \alpha_0) + \frac{1}{2} f^{(2)} (\alpha - \alpha_0)^2 + \dots$$

- \bullet Random minimum at $\mathsf{a}_0 = \alpha_0 \frac{\mathsf{f}^{(1)}}{\mathsf{f}^{(2)}}$
- \bullet a_0 is Normal if $\big(f^{(1)},f^{(2)}\big)$ are bivariate Normal

$$\epsilon_{opt} = \frac{1}{2} \left[\frac{\mathsf{f}^{(1)}}{\mathsf{f}^{(2)}} \right]^2 \langle \mathsf{f}^{(2)} \rangle$$

ullet ϵ_{opt} distributed as square of Normal random variable

Efficient optimisation

For N_{param} parameters, diagonalise $\mathsf{f}^{(2)}$

- $\bullet \ \chi^2_{N_{param}}$ distribution of order N_{param}
- ullet \longrightarrow normal for large N_{param}
- ullet Mean $\propto N_{param}/N$
- Variance $\propto (N_{param}/N)^2$
- ightarrow Offset error proportional to number of parameters in the trial wavefunction
- \rightarrow Requires $(\mathbf{f}^{(1)},\mathbf{f}^{(2)})$ to be normal not true for standard sampling
- So . . . non-standard sampling + average parameters

Standard optimisation - O atom, 24h

Efficient optimisation - O atom, 24h

1st row atoms

- ullet ~ 500 dets. Jastrow+Backflow
- 24h runtime

	E_{VMC}	E_{VMC} (prev)	Exact
Li	-7.478052(2)	-7.47799(1)	-7.47806032
Ве	-14.667243(3)	-14.66716(2)	-14.66736
В	-24.65329(1)	-24.65254(4)	-24.65391
С	-37.84361(2)	-37.84199(7)	-37.8450
N	-54.58641(4)	-54.5840(1)	-54.5892
0	-75.06058(5)	-75.0566(2)	-75.0673
F	-99.72623(8)	-99.7220(2)	-99.7339
Ne	-128.9299(1)	-128.9246(4)	-128.9376

(prev) Brown MD et al. J. Chem. Phys. 126, 224110 (2007)

1st row diatomic molecules

- $\bullet \sim 100$ dets., numerical orbitals, Jastrow+Backflow
- 0.5h runtime

	E_{VMC}	E_{VMC} (prev)	Exact
Li2	-14.9839(2)	-14.99229(5)	-14.9951
C2	-75.881(1)	-75.8862(2)	-75.9265
N2	-109.494(2)	-109.4851(3)	-109.5421
Ne2	-257.854(3)	-257.80956(2)	-257.8753

(prev) Toulouse F and Umrigar CJ, J. Chem. Phys. 128, 174101 (2008)

Conclusions

- $\bullet \ P = \psi^2 \ \text{is an ad-hoc choice}$
- This choice introduces singularities and non-Normal distributions that don't have to be there
- ullet Other P is possible
- Optimum and efficient choice can be made that improve on the standard method
- ullet A simpler P can provide a Normal error for all estimates
- ullet A simpler P can allow considerably larger sample sizes