Diffusion Monte Carlo: Exponential Scaling of Computational Cost for Large Systems

 \rightarrow arXiv:0906.0501 \leftarrow

Norbert Nemec

QMC in the Apuan Alps Vallico Sotto, 30th July 2009

Graphite

intralayer bond length: $d_{CC} = 1.4196 \text{ Å}$ atomization energy $E_{at} = 7.374 \text{ eV/atom}$ intralayer isotrop. elastic constant: $C_{11} + C_{22} = 1240 \text{ GPa}$

interlayer distance: exfoliation energy: interlayer elastic constant: $d_{\text{interlayer}} = 3.34 \text{ Å}$ $E_{\text{ex}} = 35...52 \text{ meV/atom}$ $C_{33} = 36.5 \text{ GPa}$

Exfoliation energy of graphite

Dispersion forces for thin layers

TABLE I. Asymptotic vdW energy of parallel structures. K and D_0 are constants.

System	Present	Standard
1D metals ^a	$-D^{-2}(\ln(KD))^{-3/2}$	$-D^{-5}$
1D insulators [9]	$-D^{-5}$	$-D^{-5}$
2D metals [10,11]	$-D^{-5/2}$	$-D^{-4}$
π -conjugated layers ^a	$-D^{-3}$	$-D^{-4}$
1 metallic, 1 π layer ^a	$-D^{-3}\ln(D/D_0)$	$-D^{-4}$
2D insulators [6]	$-D^{-4}$	$-D^{-4}$
Thick metals or ins. [11]	$-D^{-2}$	$-D^{-2}$

^a* Denotes new derivations given here.

[from Dobson, White and Rubio, Phys. Rev. Lett. 96, 073201 (2006)]

Diffusion quantum Monte Carlo (DMC)

N-particle Schrödinger equation:

Fermionic DMC (Fixed node approximation)

approximate ("trial") wave function Ψ_{apx} (e.g. from DFT) defines nodal surface through modified **drift-diffusion equation**:

Results: finite size convergence

Results: finite size convergence

CPU times:

graphene 3x3 cell (72 electrons): 500 CPU hours $\rightarrow \pm 3.1 \text{ meV/atom}$ graphite 3x3x1 cell (144 electrons): 1000 CPU hours $\rightarrow \pm 2.3 \text{ meV/atom}$ graphite 3x3x2 cell (288 electrons): 4000 CPU hours $\rightarrow \pm 4.4 \text{ meV/atom}$ graphite 6x6x1 cell (576 electrons): 4000 CPU hours $\rightarrow \pm 9.9 \text{ meV/atom}$

Results: finite size convergence

CPU times:

graphene 3x3 cell (72 electrons): 500 CPU hours $\rightarrow \pm 3.1 \text{ meV/atom}$ graphite 3x3x1 cell (144 electrons): 1000 CPU hours $\rightarrow \pm 2.3 \text{ meV/atom}$ graphite 3x3x2 cell (288 electrons): 4000 CPU hours $\rightarrow \pm 4.4 \text{ meV/atom}$ graphite 6x6x1 cell (576 electrons): 4000 CPU hours $\rightarrow \pm 9.9 \text{ meV/atom}$

 $10 \times 10 \times 1$ (1600 electrons), $\pm 5.0 \, \text{meV/atom} \rightarrow 120,000 \, \text{CPU}$ hours (??)

DMC algorithm

time step $d\tau$ in imaginary time τ :

- 1. drift-diffusion step
- 2. "growth" of each walker

 $w^{(p)} = \exp\left(E_{\rm ref} - E_{\rm loc}^{(p)}\right)$

- 3. integer multiplicity of walker: $\left< N_{\rm mult}^{(p)} \right> = w^{(p)}$
- 4. $N_{\text{mult}}^{(p)} \ge 2$: clone walker (p) * $N_{\text{mult}}^{(p)} = 0$: kill walker (p) *
- 5. start over for next time step

UNIVER

Computational cost of DMC

$$\boldsymbol{\epsilon}_{\text{total}} = N_{\text{step}} \times N_{\text{pop}} \times \boldsymbol{\epsilon}_{\text{step}}$$

$N_{ m step}$	number	of	(imaginary)	time steps
---------------	--------	----	-------------	------------

 $N_{
m pop}$ average population size

 $\epsilon_{\rm step}$

- CPU time needed for one single step per configuration \rightarrow "Linear scaling" QMC: $\in_{\text{step}} \propto N_{\text{atom}}$
 - [A. J. Williamson, R. Q. Hood, and J. C. Grossman, PRL 87, 246406 (2001)]

(Reblocked) Statistical standard error

Standard error in average over $N_{\text{step}} \times N_{\text{pop}}$ correlated data points:

$$\sigma(E_{\text{total}}) = N_{\text{atom}} \times \sigma(E_{\text{atom}}) = \sqrt{\left(\frac{\tau_{\text{corr}}}{\tau_{\text{step}}} \frac{1}{N_{\text{step}}}\right) \left(\frac{\chi_{\text{pop}}}{N_{\text{pop}}}\right) \sigma_{\text{dmc}}^2}$$

For a perfect insulator: N independent, identical atoms

 $\begin{aligned} \sigma_{\rm dmc}^2 & \text{raw DMC variance } (\approx \sigma_{\rm vmc}^2 = \langle \Psi | \mathcal{H}^2 | \Psi \rangle - \langle \Psi | \mathcal{H} | \Psi \rangle^2 \propto N_{\rm atom}) \\ \tau_{\rm corr} & \text{integrated serial correlation time (independent of } N_{\rm atom}) \\ \chi_{\rm pop} \geqslant 1 & \text{population correlation factor (yet unknown)} \end{aligned}$

$$\mathbf{ \in}_{\mathrm{total}} \propto \frac{\chi_{\mathrm{pop}}}{\sigma^2(E_{\mathrm{atom}})} \\ \longrightarrow \mathbf{ Scaling of } \chi_{\mathrm{pop}} \mathbf{ with } N_{\mathrm{atom}} \mathbf{ ???}$$

Norbert Nemec

Some formalism

random variable X, expectation value $\langle X \rangle$ variance: $\sigma_X^2 = \operatorname{var}[X] = \langle X^2 \rangle - \langle X \rangle^2$ standard deviation $\sigma_X = \operatorname{std}[X] = \sqrt{\operatorname{var}[X]}$ covariance: $\operatorname{cov}[X, Y] = \langle XY \rangle - \langle X \rangle \langle Y \rangle$ correlation: $\operatorname{corr}[X, Y] = \operatorname{cov}[X, Y] / \sigma_X \sigma_Y$ $\Rightarrow \operatorname{corr}[X, X] = \operatorname{tar}[X]$

homogeneous series of random variables X_i , i = 1...N, $var[X_i] = \sigma_X^2$ variance of correlated sum: $var[\sum X_i] = \sum_{i,j} cov[X_i, X_j]$ variance of series average: $var[\sum X_i/N] = \sum_{i,j} cov[X_i, X_j]/N^2$

effective sample size:
$$N_{\text{eff}} := \frac{\sigma_X^2}{\operatorname{var}[\sum X_i/N]} = \frac{N^2}{\sum_{i,j} \operatorname{corr}[X_i, X_j]}$$

Integrated autocorrelation factor

homogeneous series of random variables X_i with $var[X_i] = \sigma_X^2$ Autocorrelation: $a_j = corr[X_i, X_{i+j}]$

Series average:

$$\langle X \rangle_{\tau} = \frac{1}{N_{\text{step}}} \sum_{i=1}^{N_{\text{step}}} X_i$$

$$\operatorname{var}[\langle X \rangle_{\tau}] = \frac{\sigma_X^2}{N_{\operatorname{step}}^2} \sum_{i,j} \operatorname{corr}[X_i, X_j]$$
$$\overset{N_{\operatorname{step}} \to \infty}{\approx} \frac{\sigma_X^2}{N_{\operatorname{step}}} \sum_{j=-\infty}^{\infty} a_j$$

Integrated autocorrelation factor:

$$\chi_{\text{autocorr}} = \frac{N_{\text{step}}}{N_{\text{step}}^{\text{eff}}} = 1 + 2\sum_{j=1}^{\infty} a_j$$

Norbert Nemec

Integrated autocorrelation time $au_{ m corr}$

- "physical" process: drift diffusion in continuous time au
- computer simulation: small, finite time step $au_{ ext{step}}$
- time-step extrapolation $\tau_{step} \rightarrow 0$
- physical quantities must be independent of $au_{
 m step}$
- integrated autocorrelation factor must scale as

$$\chi_{\text{autocorr}} = \frac{\tau_{\text{corr}}}{\tau_{\text{step}}}$$

Integrated correlation time au_{corr} :

- \rightarrow ~ independent of τ_{step} when close enough to $\tau_{step} \rightarrow 0$
- \rightarrow characteristic of physical system in DMC process
- \rightarrow independent of N_{atom} for sufficiently independent atoms

Measuring population correlation

 N_{step} time steps (index i) population size N_{pop} (index p) local energy of individual configuration: E_p^i (assuming constant N_{pop} , neglecting weight fluctuations!)

Raw DMC variance:

$$\sigma_{\rm dmc}^2 := \left\langle \left\langle \left(E_p^i \right)^2 \right\rangle_p \right\rangle_i - \left\langle \left\langle E_p^i \right\rangle_p \right\rangle_i^2$$

Variance of population average:

$$\sigma_{\rm pop}^2 := \left\langle \left\langle E_p^i \right\rangle_p^2 \right\rangle_i - \left\langle \left\langle E_p^i \right\rangle_p \right\rangle_i^2$$

Effective population size:

$$N_{\mathrm{pop}}^{\mathrm{eff}} = \sigma_{\mathrm{dmc}}^2 / \sigma_{\mathrm{pop}}^2$$

Population correlation of a real system

- N_{atom} independent hydrogen atoms (nuclear charge Z, one electron)
- STO wave functions with detuning parameter α (exact for $\alpha = 1$): $\Psi(r) = \alpha e^{-\alpha Zr} + (1 - \alpha) e^{-(\alpha + 1)Zr}$

Norbert Nemec

Weight fluctuations

Assume weighted average over N_{step} time steps:

$$\langle X \rangle_N = \frac{1}{\sum w_i} \sum_{i=1}^{N_{\text{step}}} w_i X_i$$

(assuming uncorrelated, homogeneous series! $\rightarrow \operatorname{var}[X_i] = \sigma_X^2$)

Variance of average:

$$\operatorname{var}[\langle X \rangle_{N}] = \operatorname{var}\left[\frac{1}{\sum w_{i}} \sum_{i=1}^{N_{\text{step}}} w_{i} X_{i}\right]$$
$$= \frac{1}{(\sum w_{i})^{2}} \sum_{i=1}^{N} (w_{i})^{2} \operatorname{var}[X_{i}] = \frac{\sum (w_{i})^{2}}{(\sum w_{i})^{2}} \sigma_{X}^{2}$$
$$N_{\text{step}}^{\text{eff}} = \frac{\sigma_{X}^{2}}{\operatorname{var}[\langle X \rangle_{N}]} = \frac{(\sum w_{i})^{2}}{\sum (w_{i})^{2}}$$

Norbert Nemec

Weight fluctuations in a real system

UNIVERSITY OF CAMBRIDGE

Measuring statistical inefficency χ_{pop}

Total energy of DMC run – a weighted average over N_{step} values:

$$E_{\text{tot}} = \frac{1}{\sum_{i} w_{i}} \sum_{i=1}^{N_{\text{step}}} w_{i} \left\langle E_{p}^{i} \right\rangle_{\text{pop}}$$

View E_p^i as random variables for fixed w_i and N_{pop}^i :

$$\operatorname{var}[E_{\text{tot}}] = \frac{\tau_{\text{corr}}}{\tau_{\text{step}}} \frac{1}{\left(\sum_{i} w_{i}\right)^{2}} \sum_{i=1}^{N_{\text{step}}} w_{i}^{2} \operatorname{var}\left[\left\langle E_{p}^{i}\right\rangle_{\text{pop}}\right]$$
$$=: \frac{\tau_{\text{corr}}}{\tau_{\text{step}}} \times \frac{1}{N_{\text{step}}^{\text{eff}}} \times \frac{1}{N_{\text{pop}}^{\text{eff}}} \times \sigma_{\text{dmc}}^{2}$$
$$\frac{1}{N_{\text{step}}^{\text{eff}}} \times \frac{1}{N_{\text{pop}}^{\text{eff}}} = \frac{\sum_{i} \left(w_{i}^{2}\right)}{\left(\sum_{i} w_{i}\right)^{2}} \times \left(1 - \frac{1}{\sigma_{\text{dmc}}^{2}} \frac{\sum_{i} w_{i}^{2} \left(\left\langle \left(E_{p}^{i}\right)^{2}\right\rangle_{\text{pop}} - \left\langle E_{p}^{i}\right\rangle_{\text{pop}}^{2}\right)}{\sum_{i} w_{i}^{2}}\right)$$
$$\chi_{\text{pop}} = \frac{N_{\text{step}} \times N_{\text{pop}}}{N_{\text{step}}^{\text{eff}} \times N_{\text{pop}}^{\text{eff}}}$$

Norbert Nemec

Variance of local energy

$$\partial_t f(\boldsymbol{r}) = \frac{1}{2} \nabla^2 f(\boldsymbol{r}) - \nabla \cdot \left(\frac{\nabla \psi_{\text{apx}}}{\psi_{\text{apx}}}\right) f(\boldsymbol{r}) + [\boldsymbol{E} - \boldsymbol{E}_{\text{loc}}(\boldsymbol{r})] f(\boldsymbol{r})$$
$$E_{\text{loc}} = -\frac{\nabla^2 \Psi_{\text{apx}}(\boldsymbol{r})}{\Psi_{\text{apx}}(\boldsymbol{r})} + V(\boldsymbol{r})$$

VMC-variance $\sigma_{\rm vmc}^2$ – physical property of trial wave function $\Psi_{\rm apx}$:

$$\sigma_{\rm vmc}^2 = \langle \Psi_{\rm axp} | \mathcal{H}^2 | \Psi_{\rm apx} \rangle - \langle \Psi_{\rm axp} | \mathcal{H} | \Psi_{\rm apx} \rangle^2 = \operatorname{var}_{\Psi_{\rm apx}^2} [E_{\rm loc}]$$

- depends on quality of trial wfn: $\Psi_{apx} \rightarrow \Psi_0 \Rightarrow \sigma_{vmc}^2 \rightarrow 0$
- typically scales with system size: $\sigma^2_{
 m vmc} \propto N_{
 m atom}$

DMC-variance σ_{dmc}^2 ("raw" variance of local energy during DMC run): $\sigma_{dmc}^2 = \operatorname{var}_{\Psi_{DMC}(\boldsymbol{r}) \cdot \Psi_{apx}(\boldsymbol{r})}[E_{loc}(\boldsymbol{r})]$

• typically $\sigma_{\rm dmc}^2 \approx \sigma_{\rm vmc}^2$ (since $\Psi_{\rm DMC} \approx \Psi_{\rm apx} \approx \Psi_0$)

Asymptotic estimate of $\chi_{ m pop}$ for $au_{ m corr} \ll au_{ m branch}$

after branching event $(N'_{\text{pop}} = N_{\text{pop}} + 1)$: $\rightarrow N_{\text{pop}} - 1$ uncorrelated walkers, 2 identical copies $N_{\text{pop}}^{\text{eff}} = \frac{\left(\sum w_i\right)^2}{\sum (w_i)^2} = \frac{\left((N_{\text{pop}} - 1) \times 1 + 1 \times 2\right)^2}{\left((N_{\text{pop}} - 1) \times 1^2 + 1 \times 2^2\right)} = \frac{\left(N_{\text{pop}} + 1\right)^2}{N_{\text{pop}} + 3} \overset{N_{\text{pop}} \gg 1}{\approx} N_{\text{pop}} - 1$

Asymptotic estimate of $\chi_{ m pop}$ for $au_{ m corr} \ll au_{ m branch}$

Model DMC process

Uncorrelated Gaussian random sequence ξ_i : $\langle \xi_i \rangle = 0$; $var[\xi_i] = \sigma^2$

Defined correlated diffusion process:

$$E_0 := X_0 , E_i := \alpha E_{i-1} + \sqrt{1 - \alpha^2} \xi_i$$
$$\Rightarrow \operatorname{corr}[E_i, E_j] = \alpha^{|i-j|}$$
$$\Rightarrow \frac{\tau_{\operatorname{corr}}}{\tau_{\operatorname{step}}} = \frac{1 + \alpha}{1 - \alpha}$$

Model DMC process:

- each walker defined by single variable E
- correlated diffusion step according to $E \rightarrow \alpha E + \sqrt{1 \alpha^2} \xi$
- branching according to weight $w = \exp(E_{\text{ref}} E)$
- algorithm (incl. population control) similar to CASINO ($ightarrow au_{
 m ceref}$)

Model DMC process – results

Scaling of $\chi_{ m pop}$ in sample system

• N_{atom} independent hydrogen atoms with detuned wave function

Quantitative analysis of various real systems

atoms (ae)	$ au_{ m corr}$	$\sigma_{ m dmc}^2/ m atm$	$\chi_{ m pop} = 2$
He	0.5	0.0044	2700 atoms
\mathbf{C}	0.4	0.16	140 atoms
Ar	0.04	8.0	250 atoms
molecules (ae)		$\sigma_{ m dmc}^2/ m mlc$	
H_2O	0.1	0.58	550 molec.
CH_4	0.3	0.24	120 molec.
C_2H_4	0.4	0.51	38 molec.
SO_2	0.06	7.5	105 molec.
crystals		$\sigma_{ m dmc}^2/ m atom$	
diamond (pp)	0.15	0.23	630 atoms
diamond (ae)	0.1	2.3	133 atoms
graphite (pp)	0.3	0.20	135 atoms
silicon (pp)	0.4	0.052	328 atoms
electron gas		$\sigma_{ m dmc}^2/ m elec.$	
3d crystal ($r_s = 1$)	0.2	0.26	193 elec.
3d fluid $(r_s = 5)$	5	0.00042	330 elec.
3d fluid ($r_s = 10$)	16	0.000051	242 elec.
2d crystal ($r_s = 1$)	0.4	0.038	570 elec.
2d fluid $(r_s = 1)$	0.3	0.033	1154 elec.

Norbert Nemec

The big picture

Conjecture: exponential scaling of χ_{pop} is fundamental property of DMC.

"Diffusion Monte Carlo":

- not really a Monte Carlo *integration*
- rather the simulation of the time evolution of a chaotic process
- as such exponentially instable in simulation time/system size
- → other QMC methods do not suffer from this kind of scaling: variational MC, path integral MC, generally: proper MC integrations

(\rightarrow very different from the fermion sign problem!)

Summary

• CPU cost of DMC simulation:

$$\epsilon_{\rm total} \propto \frac{\chi_{\rm pop}}{\sigma^2(E_{\rm atom})}$$

• Measurement of statistical inefficiency:

$$\chi_{\rm pop} = \frac{N_{\rm step}}{N_{\rm step}^{\rm eff}} \times \frac{N_{\rm pop}}{N_{\rm pop}^{\rm eff}}$$

• Asympotics + extrapolation based on numerical data:

$$\chi_{\rm pop} \gtrsim \exp\left(\frac{\tau_{\rm corr}\sigma_{\rm dmc}}{\sqrt{2\pi}}\right)$$

- Statistical inefficiency becomes relevant for typically $N_{
 m atom} \gtrsim 100$
- Beyond this point, DMC scales as

$$\epsilon_{\rm total} \propto \exp(X\sqrt{N_{\rm atom}})$$

