## **Applications of** *Ab Initio* **Random Structure Searching**

### **Richard Needs**

University of Cambridge, UK

### Chris Pickard

University College London, UK

QMC in the Apuan Alps 2009, Vallico Sotto, Italy, 25 July – 1st August 2009

#### **Energy landscape**



Minima at low energies, could have multiple funnels

# Energy Landscape



Doye and Massen, *PRE*, **71**, 016128, 2005

# Energy Landscape



Doye and Massen, PRE, 71, 016128, 2005

# Energy Landscape



Doye and Massen, *PRE*, **71**, 016128, 2005

#### **Ab Initio Random Structure Searching**

- Make a random unit cell
- Throw the required numbers of each atom type into the cell at random
- Relax under the quantum mechanical forces and stresses
- Repeat until happy or computing credits run out
- Look at lowest-energy or other interesting structures

Pickard and Needs, Phys Rev Lett 97, 045504 (2006)

#### **Ab Initio Random Structure Searching**

- Easy to understand
- Easy to do
- Unbiased
- Teaches you chemistry
- Loves modern computers
- Can do exhaustive searching on  $\sim 12$  atoms ( $\equiv 39$  degrees of freedom)



#### A comparison of searching methods

Average number of relaxations to find the global minimum-energy structure

| Method                 | LJ 26 | LJ 38 | LJ 55 |
|------------------------|-------|-------|-------|
| Minima Hopping         | 96    | 1190  | 190   |
| Evolutionary Algorithm | 56    | 1265  | 100   |
| Random Searching       | 190   | 12560 | 9846  |

Minima Hopping and Evolutionary Algorithm data from: Schönborn *et al.* J Chem Phys 130, 144108 (2009)

LJ 38 using random structure searching with "relax-and-shake"  ${\sim}1000$ 



### Philosophy

• When you don't know anything, select structures from a uniform random distribution

• When you know something for sure impose it directly, when you think something is likely to be true bias the search towards it

• Impose chemical ideas through constraints on the initial structures - chemical units, coordination number

- Use experimental data as constraints
- Impose symmetry

#### **Density Functional Theory Calculations**

 $\mathsf{CASTEP}\ \mathsf{code}$ 

Plane wave basis set

Ultrasoft pseudopotentials

Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA)

#### **Ammonia NH**<sub>3</sub> - Enthalpy versus Pressure



Dashed lines: Molecular Phases Solid lines: Ionic Phases

#### **Ammonia NH**<sub>3</sub> - **Structures**



90-311 GPa

>440 GPa

Pickard and Needs Nature Materials 7, 775 (2008)

#### **Gas-Phase Proton Transfer Energies for NH**<sub>3</sub> and H<sub>2</sub>**O**

| $2\mathrm{NH}_3$                         | $\rightarrow$ | $\mathrm{NH}_2^- + \mathrm{NH}_4^+$        | $\cos$ ts | $8.8\mathrm{eV}$  |
|------------------------------------------|---------------|--------------------------------------------|-----------|-------------------|
| $2H_2O$                                  | $\rightarrow$ | $\mathrm{OH}^- + \mathrm{H}_3\mathrm{O}^+$ | $\cos$ ts | $9.8\mathrm{eV}$  |
| $\mathrm{NH}_3 + \mathrm{H}_2\mathrm{O}$ | $\rightarrow$ | $\rm NH_2^- + H_3O^+$                      | $\cos$ ts | $10.3\mathrm{eV}$ |
| $NH_3 + H_2O$                            | $\rightarrow$ | $OH^- + NH_4^+$                            | costs     | $8.1\mathrm{eV}$  |

• Gain in electrostatic energy from bringing point + and – charges from  $\infty$  to a separation of 2.5 Å is 5.8 eV

- Packing of ions compared with molecules
- DFT study by Fortes *et al. J. Chem. Phys.* **115**, 7006 (2001) predicted a transition from  $NH_3 + H_2O$  to  $OH^- + NH_4^+$  at 5 GPa

#### Ammonia Monohydrate

A component of the outer planets and their larger satellites



Fortes, Suard, Lemé-Cailleau, Pickard and Needs, unpublished

#### **Structure of Phase II of Ammonia Monohydrate**

• 2003: Neutron diffraction experiment by Fortes *et al.* on ammonia dihydrate which decomposed under pressure into ammonia monohydrate and water ice. No structure could be obtained, but unit cell has Z = 16 (112 atoms) with possible space groups *Pcca*, *Pnca*, or *Pbca* 

• 2008: DFT calculations using experimental unit cell, inserting 16  $H_3N \cdot H \cdot OH$  units, assuming *Pcca*, *Pnca*, or *Pbca* symmetry. Lowest enthalpy structure of *Pbca* symmetry

• 2009: Neutron diffraction experiment by Fortes *et al.* on ammonia monohydrate obtains a structure of *Pbca* symmetry (slightly different from DFT prediction)

#### **Structure of Phase II of Ammonia Monohydrate**



#### Chiral Framework Structure for C, Si, Ge, Sn



#### **Chiral Framework Structure**



#### **CFS and Clathrate II compared with diamond**

| Element | $\Delta E_{ m CFS}$ (meV) | $\Delta E_{ m CII}$ (meV) | $V_{ m CFS}$ (Å <sup>3</sup> ) | $V_{ m dia}$ (Å <sup>3</sup> ) |
|---------|---------------------------|---------------------------|--------------------------------|--------------------------------|
| C       | 112                       | 72                        | 6.2                            | 5.7                            |
| Si      | 53                        | 52                        | 22.1                           | 20.4                           |
| Ge      | 34                        | 26                        | 26.0                           | 24.1                           |
| Sn      | 28                        | 23                        | 39.5                           | 36.8                           |

Pickard and Needs, unpublished



Clathrate II structure

#### **High-Pressure Phases of Lithium**

FCC (12-fold)  $\Rightarrow I\bar{4}3d$  40 GPa (3-fold)  $\Rightarrow ????$  70 GPa

High pressure phases are "Elemental electrides" (Anions are electrons)



Pickard and Needs, Phys Rev Lett 102, 146401 (2009)

#### **High-Pressure Phases of Nitrogen**

Structures of the higher-pressure molecular phases



Pickard and Needs, Phys Rev Lett 102, 125702 (2009)

#### **Crystal Polymorph Prediction**

Can we predict the crystal structure(s) of paracetamol?



"Layered approach"

Empirical potentials DFT QMC



"As it's your first day we're going to start you on something easy"

### Conclusions

## It's all really quite fun!