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Theory



  

Cold Atoms

● Bose Gas   

● Fermi Gas  

● Vary the interaction strength between fermionic atoms...

- BEC (1995)

- Quantised Vortices

- Propagation of solitons

- e.g.  6Li, 40K, 2H



  

BEC-BCS crossover

● Strong pairing :  

● Weak pairing :

● Interesting point at unitarity :

● How would this occur?

- Atoms form molecules of up and down spin

- These molecules are bosonic

- Bosonic molecules condense into BEC

- Atoms interact over a long range

- BCS theory

- Dilute                      : Interatomic potential range <<  Interparticle distance

- Strongly interacting : Scattering length      >>  Interparticle distance



  

Feshbach Resonance

● 2 channels corresponding to different spin states

● Open channel (scattering process)

● Closed channel (bound state)

● Resonance occurs when Open and Closed channel 
energies are close

● Channel energies are tuned by a magnetic field
From Giorgini et al eprint cond-mat 
0706.3360v1



  

Feshbach Resonance (2)

Resonances in 6Li from Bourdel et al PRL 
93 050401

● The s-wave scattering length, a, diverges at resonance



  

Universal Number, ξ

● At resonance the only relevant energy scale is that of a non-
interacting gas

● This value, ξ,  is believed to be universal when kFR0 << 1 where 
R0 is the effective range of interaction

● Throughout we measure the interaction strength in units of 1/kFa

E I= EFG=
3k F

2

10m



  

Previous Work, ξ

● 2 previous studies using QMC, 

● Other methods,

● Experiment

- J. Carlson et al,              PRL 91 050401:    2003 ξ = 0.44(1)

- G.E. Astrakharchik et al, PRL 93 200404:  2004 ξ = 0.42(1)

- S. Y. Chang et al,           PRL 95 080402: 2005 ξ = 0.414(5)

- J. Carlson et al,              PRL 95 060401: 2005 ξ = 0.42(1)

- Nishida et al: eprint cond-mat/0607835: 2007  ξ = 0.38(1)

-  Bartenstein et al        PRL 92 120401: 2004    ξ = 0.32(10)

- Partridge et al             Science 311 503: 2006  ξ = 0.46(5)



  

The Model



  

Modelling the Feshbach Resonance

● Pauli-Exclusion Principle for parallel spin

● As interatomic potential << atom spacing, the exact form of the interaction is unimportant

● 2 types of interaction normally used...

● We use the Pöschl-Teller

Pöschl-TellerSquare Well



  

Pairing Wavefunctions

● In QMC for a spin-independent operator we normally use a product of Slater 
determinants, one containing n up-spin and one m, down-spin one-particle orbitals, � .

●  However, we want a wave function that explicitly describes pairing

=eJ∣1r1  ⋯ nr1 
⋮ ⋱ ⋮

1rn  ⋯ nrn ∣∣
1r1  ⋯ mr1 

⋮ ⋱ ⋮
1rm  ⋯ mrm ∣



  

Pairing Wavefunctions (2)

=eJ∣r1 −r1  ⋯ r1 −r n 
⋮ ⋱ ⋮

rn −r1  ⋯ r n −rn ∣
● We now use only one Slater determinant. It contains only one type of orbital which is a 
function of the distance between up and down particles

● 3-types of orbital have been tried

● And combinations of the above

=∑
i=1

C i exp i r −r 

=∑
i=1

g i exp i r −r 2 

=∑
i=0

i r −r 
i

- Pairing Planewaves

- Pairing Gaussians

- Pairing Polynomials



  

Jastrow factor + Backflow

● Jastrow factor of Drummond et al PRB 70 235119 (2004) (CASINO users, that's a Jastrow U + P)

● Backflow corrections of López Ríos et al PRE 74 066701 (2006)

● We optimised the Jastrow, Backflow and orbital parameters using VMC and Energy 
Minimisation
     
    
 
● Conclude using DMC 

J=∑
l=1

L

l r ij
l∑

A

aA∑
GA

cosGA⋅r ij

BF R =eJ R s X 

x i=r ii R 



  

September 2007

● Gaussians v Polynomials?
    Gaussians are better orbitals alone – but polynomials are much faster

● Significant finite size errors, 
     128 particles isn't really enough

Larger number of particles unfeasible

● General Bad Behaviour – won't minimise the energy in VMC properly with EMIN
Configurations can't “find” the sharp well
When things go a bit wrong, energy goes catastophically wrong
Sometimes ignores well altogether and goes to non-interacting wavefunction

● Finite width of the well still needs extrapolating to 0 (dilute limit)
If configs. have problems with finite well, how do we deal with an infinitely narrow one? 

 



  

2 years pass...



  

Gaussians or 
Polynomials?



  

Gaussians or Polynomial Orbitals

● Yes, bare gaussian orbitals are better than polynomials

● But gaussians+J+B aren't as good as polynomials+J+B

● The total energy is strongly dependent on the short-range behaviour of the 
wavefunction. (that's where the well is!)

● The polynomial is better at this, if a planewave Jastrow is able to represent the 
long range behaviour

=> Use polynomials as they're much faster.



  

Finite Size Errors?



  

Baldereschi's Mean-Value Point

There is some point in the 1st BZ that gives the best approximation to an integral over all 
the BZ.

This is in terms of the first-failure star  -  the first G vector that gives rise to an error in the 
integration.

Further to this, Baldereschi minimises the error in the first-failure star.

The paper reports the Mean-Value (or Baldereschi) Points for SC, FCC and BCC.

In the old days, when you could only afford one k-point, the Baldereschi was the best.

So what's so wrong with just using Γ  (0,0,0)...



  

The  Γ Point

Because of the curved nature of band structure, the  Γ point and the BZ boundary are the 
furthest points from the mean value.

However, there is only 1  Γ 
point, but a whole boundary 
of BZ edge.

Hence Γ is always going to be 
the worst point.

D.J. Chadi and M.L. Cohen, Tight Binding Calculations of the Valence Bands of Diamond and 
Zincblende Crystals. Phys. Stat. Sol. (b) 68, 405 (1975).



  

ГГ

BZB

BZB

128 particle cell

ГГ

BZB

BZB

X

Baldereschi of cell (1/4, 1/4, 1/4 )



  

How?

X

ГГ

BZB

BZB

X

X

X

X

BZB of Supercell

BZB of Supercell

Baldereschi of super cell (1/8, 1/8, 1/8 )

Normal MP 2 x 2 x 2 
grid, but centred on

We have effectively integrated 
the 1024 particle cell at its 
Baldereschi point (1 x 1 x 1)



  

Bad Behaviour?



  

Bad Behaviour

●  Due to the short-range nature of the well, if things go wrong, they go very wrong.

●  Use Mean-Absolute Deviation from the Median  (MADMIN) to minimise energy of 
VMC wavefunction.
 => Less weight placed on outliers

● Can't use EMIN for complex wavefunctions yet anyway!

● Train the wavefunciton by narrowing the well throughout the simulation.



  

Well Width Extrapolation



  

Well width extrapolation

● Make the well-width narrower, makes is more difficult for the wavefunctions to find.
● Changes cut-offs of polynomial parameters in orbitals, Jastrow and backflow
● Bad behaviour!

=>Can't use an easy to generate wavefunction as a 1st approximation to a difficult one. 
(Everything changes)

 
● But, it is the dilution that goes to zero not well width. So we can decrease the particle 
density instead
● Well width remains the same, so wavefunctions are a good approximation
● Cutoffs are a good approximation
● Makes Wigner-Seitz radius bigger, but that's the part of the cell that is less important 
for the energy.



  

Results



  

Results

- J. Carlson et al,              (38 atoms)             2003 ξ = 0.44(1)

- G.E. Astrakharchik et al,(66 atoms)       2004 ξ = 0.42(1)

- S. Y. Chang et al,           (14 atoms)      2005 ξ = 0.414(5)

- J. Carlson et al,              (66 atoms)      2005 ξ = 0.42(1)

- Gamma point (128 atoms)   ξ = 0.4339(1) 

=> Good agreement at Gamma point.  

But...

- Multi-B 2x2x2 (1024 atoms) ξ = 0.4783(2)



  

ξ

Dilution (r
s
μ)

Well width extrapolation



  

Condensate Fraction

Example of Off-Diagonal Long-Range Order

Calculated from rotationally and translationally averaged two-body density-matrix

c=
2

N
lim
r∞

TR
2
r 



  

Condensate Fraction

● [Astrakharchik et al. PRL 95 23040 (2005)]        ~0.58

● We obtain:                                   Gamma 0.512(9)

                              Multi-k-point  0.508(8)

 SC-MF

 BCS

 Bogoliubov

BEC BCS



  

Conclusions

● Baldereschi can get you better results

● K-point sampling is a good idea for QMC too at least for energies.

● Well-width extrapolation is the main problem

●Very difficult to do well

● Possible to overcome most of the technicalities in the end
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