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Molecular Interactions

» Gases condense, so there

must be an attractive force o ' '
between the molecules at sk i
long range.

» Liquids have finite volume ) 0_
and low compressibility, so < ’
there must be a steep
repulsive region at shorter -1or ]
distances. sl , ,

6
R[a.u.]



» Attraction: Electrostatic,
polarization (second-order
electrostatic interaction).

» Repulsion: Pauli repulsion

(Coulomb repulsion is also
possible).
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What about Heluim?

>

Liquid Helium exists so
there must be an attraction
between helium atoms.

But helium atoms are
spherical. So the attraction
cannot arise from a classical
electrostatic interaction.

Q: How do we know that
helium atoms are spherical?

A: Measure the dipole
moment.

Extended Objects  Surprises  Credits

Extras
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0

-1/R’

Recall: Mean force of attraction between two dipoles in
1
W.

thermal equilibrium is (F) ~ —%
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Picture so far:

> Present even at 0° K. So cannot be due to thermal
fluctuations.

» Purely quantum phenomenon.
» Always attractive (we have not shown this).

» Semi-classical interpretation: correlations in spontaneous
fluctuations.

Extras



Drude model for the Dispersion
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>
Z
» R — oo: Two independent oscillators:
E(o0) = E;+ Ep = (ny + np + 1)hw.
» Finite R: Interacting oscillators with potential:
2 2
V=— Q ZaZp = —CZy2Zp. (4)

4egR3
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Dimer Hamiltonian:

Pd 1, nd 1
_ﬂd7§+§kza_27ﬁ+ kz2 — cz.zp (5)

Can be very easily solved by changing coordinates to
Z1 = (za+2p)/2 and Z» = (z5 — zp)/2. In these coordinates we get

h2 d? d? 1 1
H=— kq Z2 ko Z2 6
(dZ2+dZ2)+ 141+ Sk (6)
where 02
2
kl_k+c_k+ IrcoRE (7)

and, ko = k — c.

Extras
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Therefore, the energy at finite R is
E(R)=E + Ez

(n1 + )ﬁwl + (n2 + )hwg,

WI_\/E_ k:;c
Va5 6 )

The expansion is valid if R is large enough.

where

Credits

Extras
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We now have all of it. Let's calculate the energy of the ground
state.

Eo(R) = %h(wl +W2)

@t 1
N 2(4mep)?k? RO
G
:Eo(oo)—ng—--- (10)

So the system is stabilized by the correlation term. The
stabilization energy is the dispersion.
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Let's re-write Cg in terms of more recognisable quantities:
» Force balance kz = QE so z = %

» Dipole moment y = zQ = #

. .- o Q2
» Polarizability 1 = aE therefore a = 3-.
» Excitation energy London suggested we use hw = Ej, the
vertical ionization energy.

So we get (including a 3-D factor),

3a2E;
= . 11
Go 4(47ep)? (11)
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The Hellmann—Feynmann force theorem
Recap of the theorem:

» H(A) is an Hermitian operator that depends on a parameter \.
> HO)IA) = EQD(N) st (()[e() = 1.
> E(A) = WA)HN)[Y(A))-

» H-F theorem:

— = W)= = o(A)- (12)

» Also holds for approximate solutions as long as they are
variational. (Prove it!)
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Now consider the helium dimer (Born—Oppenheimer
approximation) separated by distance R:

1 2 1 2
H:_*vl_i_* 2= T 55
2 |r1—’RA| 2 |r2—RB|

2 2 1 4

— ~ + +
Irn—Rg| [r2—=Ral [n—r] [Ra—TRsgl

Place the two atoms along the z-axis. And take A = Z4. So we
can use the H-F theorem to calculate the force on nucleus A:

dE dH
—Fa=—5- dZa <¢|TZAWJ>
P U R (13)
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4 p(r)
Fa=——t+2 | 2 (7,
A R2 + /!RA—YP( A — z)dr

0

N Y

O\ Y
O O
Zp Zg

» The first term is repulsive. So the attraction must come from
the second term alone.

> Write p = (p% + p&) + Ap, where p9 and p% are the
un-distorted, spherically symmetric densities for the helium
atoms.

» The attraction must arise from Ap alone.
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5
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Allen & Tozer (2002) :
. = 5 =
calculated Ap using oy R=85m
the BD(T) method 53 \
(Breuckner Doubles ol Fe \He ~
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Feynmann (1939):

The Schrodinger perturbation theory for two interacting atoms at a
separation R, ..., leads to the result that the charge distribution of
each is distorted from central symmetry, a dipole moment of order
1/R" being induced in each atom. The negative charge distribution
of each atom has its center of gravity moved towards the other.
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Concepts: Polarizability

P
6

The polarizability, «;, can be defined as a = —82U/(9E2|E:0. Or,
using an expression from perturbation theory:

—Z (0x]m) {n[x|0)
E,— E

//xarr 0) x'drdr’

1
U:—uE—EaEz— E3 -

Multipole expansion:

1

1 1
=l - ﬁ(zzlzz —Xx1x2 — y1y2) +
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Dispersion
r,r); ro, th;
E® _ / / aalry, 1y 1w)as(re, r Iu)drldrldrzdr’z
P [r1 —raf[r; — 15

For two atoms, using the multipole expansion and the definition of
the polarizabilities, this becomes

@ _ 3 [

disp = "6 aa(iv)ag(iu)du — - -

Q: Why no charge term from the multipole expansion?
A: Charge conservation means such terms are all zero.

dlSp = ZZ TabT /OO Oé?t/(l'W)OdZu/(l.W)dW
ab C
- —zz( )
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Distribution When does the molecular polarizability make physical
sense?
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More likely, the molecule is in a non-uniform field. Does the total
molecular polarizability make sense now?
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Or do we need to use some sort of local polarizability?

000000000 0008ed
&9

» The polarizability is derived from the density-response
function that is a non-local object: it tells us how a
perturbation at some point propagates to another.

» This is reflected in the distributed polarizabilities: they depend

on pairs of sites:
a? (14)
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» This term describes the change in the dipole moment at site a
due to the electric field at site b:

Ap? = —aPEP. (15)

» The non-local terms typically decay exponentially with
distance of the sites. Viewed in matrix form we get a
band-diagonal matrix.

» The non-local terms can be transformed into local terms.
This is an approximation, but works rather well...

» The local polarizabilities give rise to local Cg coefficients.

» This is the source of the concept of —Cs/R® terms between
every pair of sites in two interacting molecules.
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Here is the picture you should have in mind:

o’ oC
0000006006000 0000
G G

Assumption:

aab ~ e_'YRab

Valid for materials with a finite band/HOMO-LUMO gap
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Interactions between extended objects Infinite, parallel chains with
finite gap

— 0 0000000000000
R
0 0000000000000

» Length scale: R
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Infinite, parallel chains with finite gap

» Length scale: R

> Select section of order R.
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Infinite, parallel chains with finite gap

R

» Interaction of blue atom with others is:

—— X R (16)
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Infinite, parallel chains with finite gap

R

» But there are order R blue atoms, so interaction between the

bits in the box is: c
—R% x R R (17)
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Infinite, parallel chains with finite gap

R

» And interaction per unit length is:

—% x Rx R/R = —% (18)
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What about metals? Something must be different and a simple
example of an atom interacting with a thin metallic (infinite) plane
shows us this:

atom
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Any fluctuation in the atom is mirrored (oppositely) by the
metallic sheet. So a dipolar fluctuation sees a perfectly correlated
image dipole.
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So the resulting interaction will be

But it is quite different for insulators. The same sort of analysis as
we did for the interaction between infinite chains will give us:

» Atom- - - thin-sheet:

C
TRt

» Atom- - - thick-sheet: c

R3
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Dobson, White & Rubio, PRL 96, (2006).

System Metals Insulators
1-D —R~2(In(KR))™3/2 —R™®
2-D —R™5/2 ~R™4

Verified using DMC calculations on the 1-D and 2-D HEG by
Drummond & Needs (PRL 99, (2007)).
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H»> chains

X

-
00 00 00 00

1

» Distortion parameter: £ = y/x.

» Finite chains (64 H atoms). Ali Alavi and James Spencer have
looked at infinte chains.

» Variation in HOMO-LUMO gap.

§ (H2)2 (H2)a (H2)s (H2)is (H2)32
2.0 0.458 0.409 0.382 0.370 0.366
15 0.305 0.280 0.270
1.25 0.202 0.183
1.0 0.099 0.057
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Interactions between distorted chains.

—00—0 000 00—

V4

—00 0000 00—




Variations with chain length

y/x =2 : Variations in chain length
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y/x =2 & 1 : Variations in chain length
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(1)

Power-law behaviour of Ed;Sp n the region from

§ (H2)2  (H2)a (H2)s (H2)16 (H2)32

4.0

2.0 520 4.99 4.89 4.84
1.5 4.58 4.50
1.25 4.20 4.09

1.0 3.52 3.17
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Why??? The exact (expanded) dispersion energy is not

ED) == Z Z /0 adu(iw)ab, (iw)dw

but it is

(@)
B2 = -S| ot (w)alh (iw)dw

aa’ b,b’
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(H2)32: Charge-flow terms

Charge-flow polarizability matrix : {(H2)}32 : 2Re

InlAbs{alpha_ie@,8632>]1 [a.u.]




{H2)32 : 1.5Re

Charge=flow polarizability matrix

[*ne] [{{08 003 eydTe)squiuT

¢
o
&




{H2)32 : 1.25Re

Charge=flow polarizability matrix

[*ne] [{{08 003 eydTe)squiuT

¢
o
&
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Charge=flow polarizability matrix : {H2}32 : 1Re

InlAbs{alpha_£668,8083}]1 [a.u.l




(H2)32: Dispersion coefficients

32 H2 molecules, spacing 2Re
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32 H2 molecules, spacing IRe
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Credits

» Work on infinite chains that started it all: Ali Alavi & James
Spencer

» Implementation of non-local dispersion coefficients and code
to use them: Anthony Stone

And a very big thanks to Mike!

Extras



Anthrapyralene

Anthrapyralene
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