

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

M. Marchi^{1,2}, S. Azadi², M. Casula³, S. Sorella^{1,2}

¹ DEMOCRITOS, National Simulation Center, 34014, Trieste, Italy.

² SISSA, International School for Advanced Studies, 34014, Trieste, Italy.

³ Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau, France.

Outline

- Brief introduction
- JAGP wave function
- Constrained optimization of molecular orbitals
- Test and applications:
 - 1. Be₂: a challenging molecule!
 - 2. F₂
 - 3. Results for dimers composed of first-row atoms
 - 4. Determination of Fe₂ ground state
- Conclusions

Introduction

- Goal: Accurate description of chemical bond with minor computational effort.
- Framework: QMC simulations and correlated antisymmetrized geminal power wave function (JAGP) (based on Pauling's resonating valence bond idea)
- Techniques: optimization techniques (stochastic reconfiguration with Hessian acceleration), VMC, LRDMC (pseudopotentials to eliminate valence core electrons) and JAGP with molecular orbitals (constrained optimization).

Trial wave functions

N-electron system:

$$\Psi = \Phi_N J$$

• Φ_N accounts for statistical correlations and determines the nodes

 \blacksquare J accounts for so-called 'dynamical' correlations.

RVB wave functions

- Pauling: chemical valence bond described as (singlet) pair of electrons and the true quantum state of a compound is the superposition or resonance of many valence-bond states.
 The superposition usually improves the variational energy of the state.
 L. Pauling, Phys. Rev. 54, 899 (1938)
 Example: Benzene
- Anderson further developed this idea to study high-temperature superconductors
- Bouchaud and Lhuillier applied it in a MC study of 3 He

AGP ansatz

 Φ_N is the antisymetrized product of geminals (AGP) (first introduced by Hurley et al. '53):

$$\Phi_N(\vec{R}) = \mathcal{A} \prod_{i=1}^{N/2} \Phi(\vec{r}_i^{\uparrow}, \vec{r}_i^{\downarrow}),$$

TT 10

 $\Phi(\vec{r}_i^{\uparrow},\vec{r}_i^{\downarrow}) = \phi(\vec{r}_i^{\uparrow},\vec{r}_i^{\downarrow}) \frac{1}{\sqrt{2}} [|\uparrow\downarrow\rangle - |\uparrow\downarrow\rangle] \text{ (geminal) is a singlet and } \phi \text{ symmetric.}$

The AGP can be written as a *single determinant* of pairing orbitals

$$\Phi_N(\vec{R}) = det(A_{ij}),$$

with $A_{ij} = \phi(\vec{r}_i^{\uparrow}, \vec{r}_j^{\downarrow})$ (and \vec{R} is the *N*-electron vector of coordinates).

Basis set dependence

The basis set expansion of the pairing function will determine the rank (number of non zero eigenvalues) of the matrix A_{ij}

- Minimal basis set: number of orbitals = N/2
 rank of A = N/2
 AGP = HF(best wave function written as a single Slater determinant)
- Expansion of the pairing beyond the minimal basis set: a single AGP determinant can be formally written as a *linear combination of many* Slater determinants (resonance)
- Correlation is introduced with the computational cost of a single determinant!!

General case

N electrons with N_{\uparrow} up spins (N_{\downarrow} down spins), $N_{\uparrow} \ge N_{\downarrow}$. We describe a pure spin state with total spin $S = |N_{\uparrow} - N_{\downarrow}|/2$ and maximum spin projection $S_z^{tot} = S$ by means of the antisymmetrized product of N_{\downarrow} singlet pairs and 2S unpaired orbitals

$$\Phi_N(\vec{R}) = \mathcal{A} \prod_{i=1}^{N_{\downarrow}} \phi(\vec{r}_i^{\uparrow}, \vec{r}_i^{\downarrow}) \prod_{j=N_{\downarrow}+1}^{N_{\uparrow}} \phi_j(\vec{r}_j^{\uparrow})$$

Applications:

- **atoms**: Casula et al., J. Chem. Phys. **119**, 6500 (2003)
- molecules: Casula et al., J. Chem. Phys. **121** 7110 (2004)
- aromatic compounds: Sorella et al, J. Chem. Phys. 127, 014105 (2007)

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Mariapia Marchi

Jastrow factor

(Sorella et al., 2007)

$$J(\vec{R}) = J_1(R)J_2(R)J_3(R)J_4(R)$$

One-body Jastrow:

$$J_1 = \exp\left[\sum_{ia} -(2Z_a)^{3/4} u(Z_a^{1/4} r_{ia}) + \sum_{ial} g_l^a \chi_{al}^J(\vec{r_i})\right];$$

two-body Jastrow:

$$J_2 = \exp\left[\sum_{i < j} u(r_{ij})\right],$$

i, j electron indexes, χ_{al}^J single part. orbit. of type l centered on nucleus a; r_{ia} and r_{ij} electron-ion and electron-electron distances. $u(r) = F[1 - \exp(-r/F)]/2$ fixes the cusp conditions. g_l^a and F are optimizable variational parameters. QMC in the Apuan Alps, Vallico di sotto, July 28th 2009 Mariapia Marchi RVB wf with molecular orbitals... – p. 9

Three and four-body Jastrow:

$$J_3, J_4(\vec{R}) = \exp\left(\sum_{i < j} f(\vec{r_i}, \vec{r_j})\right),$$

 $\vec{r_i}$ the nucleus-ion distance, $f(\vec{r_i}, \vec{r_j}) = \sum_{ablm} g_{lm}^{ab} \chi_{al}^J(\vec{r_i}) \chi_{bm}^J(\vec{r_j})$, and g_{lm}^{ab} optimizable parameter.

J fixes the cusps, takes into account weak electron-electron interactions of the vdW type, and suppresses higher energy configurations with overlapping valence bonds.

Molecular orbital expansion

$$\phi(\vec{r},\vec{r}') = \sum_{j=1}^{n-2S} \lambda_j \phi_j(\vec{r}) \phi_j(\vec{r}'),$$

n is large enough, and $\{\phi_j\}$ is an orthogonal single particle basis set (molecolar orbitals (MOs)), which reaches its complete basis set limit (CBS) for $n \to \infty$. $\phi_i(\vec{r}) = \sum_{a,j} \zeta^i_{a,j} \varphi_{a,j}(\vec{r}), \varphi_{a,j}$ atomic orbital of type *j* centered on atom *a*.

 $\zeta_{a,j}^i$ and λ_j variational parameters.

Minimization of the wave function

To find better nodes, one has to optimize a variational wave functions which has several parameters.

- Stochastic Reconfiguration: S. Sorella, Phys. Rev. B 71, 241103 (2005).
- Stochastic reconfiguration with Hessian acceleration: C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, PRL 98, 110201 (2006).

Binding energy

- Atoms are well described by a correlated Hartree-Fock (JHF) (Jastrow applied to Hartree-Fock Slater determinant provides at least $\sim 90\%$ of the correlation energy within the DMC)
- Idea: extend JHF approximation for the chemical bond, by using a RVB wavefunction with an *appropriate* number of molecular orbitals n* in the pairing function. n* univocally determined by requiring to obtain JHF energy when atoms are at large distance.
- Ansatz: $B = E(\text{molecule}, n^*) 2 E(\text{atom}, JHF)$ (homonuclear dimers)!

Constrained variational minimization

Molecule composed of atoms A_i :

$$n_{HF} \le \mathbf{n}^* \le \tilde{n} (=\sum_i N_{\uparrow}(A_i))$$

 $\mathsf{JAGP}n^*$ wave function

If $n^* = n_{HF}$, then JAGP n^* reduces to a JHF description of the molecule (e.g. Be₂, B₂).

Optimization with rank of the AGP fixed to equal n^* !!!

Recent review on experimental and computational studies for Be2, with new experimental reference data (Merrit et al, *sciencexpress*, may 2009)

- 1930: experiments \Rightarrow ground state interaction between two Be atoms is repulsive. Also confirmed by SCF calculations and some CI studies.
- Then shallow van der Waals minimum ($R_e \sim 8 \div 9a_0$)/deeper minima at shorter bond lengths ($R_e \sim 4.5a_0$)
- Technical challenge for experimental studies:
 - 1. high melting and boiling points and almost monoatomic vapour
 - 2. Be is easily oxidized and the oxide is tossic.

- Improvements in experimental techniques (pulsed laser ablation): gas phase spectra
- Results: shallow minimum but shorter bond length ($R_e \sim 4.6a_0$)
- Consequence: new input in computational studies
- Casula et al (2004): fail to find the bond at the expected distance

Present QMC approach:

$$n^* = n_{HF} = 4$$

Hence JHF description of the molecule through the constrained optimization of the JAGPn^{*} wave function and JHF description of the fragments in the atomization limit!

- All electron calculations
- ${}_{ullet}$ 6s4p2d uncontracted Slater basis set for the AGP, 4s4p for J

RHF by Roeggen et al. (1996)

 F_2

CEEIS-FCI by Bytautas et al, 2007

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Mariapia Marchi

Results for diatomic molecules

Bond length (a.u.)								
	Be_2 (all el.)	B_2	C_2	N ₂	0 ₂	F ₂	LiF	CN
JHF VMC	4.85(5)	3.041(6)	2.367(2)	2.048(1)	2.27(1)	2.66(1)	2.95(4)	2.185(6)
JAGPn [*] VMC	=	=	2.334(6)	2.075(2)	2.268(7)	2.661(5)	2.92(2)	2.200(6)
JHF LRDMC	4.65(7)	3.021(9)	2.369(3)	2.051(1)	2.270(4)	2.665(9)	2.949(8)	2.201(3)
JAGPn [*] LRDMC	=	=	2.337(6)	2.075(1)	2.277(4)	2.663(3)	2.950(7)	2.202(2)
Exact estim.	4.63^{a}	3.005°	$2.3481^{\rm b}$	2.075°	2.283^{c}	$2.668^{\rm c}$	2.955°	$2.214^{\rm c}$
		1	Well deptl	n (eV)			•	
W 4944 28 8-5 2 6-5 7	Be_2 (all. el)	B_2	C_2	N_2	O_2	\mathbf{F}_2	LiF	CN
JHF VMC	0.120(5)	2.754(3)	5.538(9)	9.662(3)	4.976(8)	1.124(4)	5.93(2)	7.52(1)
JAGPn [*] VMC	=	=	6.327(9)	9.874(2)	5.060(7)	1.671(2)	5.96(2)	7.68(1)
$J \times SD DMC$	0.125(1)	2.798(3)	5.656(3)	9.583(3)	4.992(7)	1.349(6)		
JHF LRDMC	0.143(6)	2.797(2)	5.763(9)	9.665(2)	5.070(5)	1.452(3)	6.049(6)	7.661(5)
JAGPn [*] LRDMC		=	6.297(8)	9.882(1)	5.126(5)	1.686(2)	6.056(6)	7.744(5)
Exact estim.	$0.1153(3)^{\rm a}$	$2.91(6)^{d}$	$6.44(2)^{e}$	$9.908(3)^{\epsilon}$	$5.241(3)^{6}$	$1.693(5)^{\circ}$	$6.02(9)^{f}$	$7.85(9)^{f}$
ZPE (mH)								
	Be_2 (all el.)	B_2	C_2	N_2	O_2	F_2	LiF	CN
JHF VMC	0.56(5)	2.49(5)	4.3(1)	6.38(6)	3.8(1)	2.20(3)	2.3(2)	4.9(1)
JAGPn [*] VMC	—	=	4.2(1)	5.48(3)	3.85(9)	2.20(3)	2.1(2)	4.87(8)
JHF LRDMC	0.61(9)	2.51(7)	4.38(3)	5.83(6)	3.77(5)	2.16(3)	2.18(8)	4.81(3)
JAGPn [*] LRDMC	-	=	4.3(1)	5.51(2)	3.70(9)	2.22(2)	2.10(6)	4.82(4)
Exp.	0.56^{a}	$2.4^{ m c}$	$4.2^{ m e}$	$5.4^{ m e}$	$3.6^{ m e}$	$2.1^{ m e}$	$2.07^{\rm c}$	4.71°

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Fe₂ (Intro)

Transition metal compounds presents:

- \checkmark strong electron correlations in the nearly half-filled d orbitals
- non trivial ordering of low-lying energy states which differ by their spin

Fe₂: Former theoretical studies

- ⁷ Δ_u : DFT studies with various functionals (Salahub and coworkers (1993,1994,2002), Bauschlicher and Co. (2003)) +MRCI calculations (Tatewaki et al., 1988)
- ${}^{9}\Sigma_{u}^{-}$: recent MRCI (Hübner et al, 2002) + DFT studies with CC (Irigoras et al., 2003) and +U corrections (Kulik et al., 2006)
- VMC energy of ${}^9\Sigma_u^-$ and ${}^7\Delta_u$ are close to each other (Casula, PhD thesis)

Fe₂: Experiments (I)

Negative-ion photoelectron spectroscopy (PES) (Leopold et al. 1986,1988):

 Fe_2^- excited by incoming photon

Fe₂: Experiments (II)

Electron spin resonance (ESR) (Baumann et al. 1984):

They fail to observe Fe₂. Thus, Fe₂ ground state cannot be ⁹ Σ_g , unless Fe₂ has a magnetic split > 8 cm⁻¹ which would provide an energy split not detectable by experim. setup.

Fe₂: our QMC description (I)

- Fe₂: ${}^{9}\Sigma_{g}^{-}$, ${}^{7}\Sigma_{g}^{-}$, ${}^{7}\Delta_{u}$
- $Fe_2^-: {}^8\Sigma_u^-, {}^8\Delta_g$
- Neon-core pseudopotential (Dolg et al., 1987)
- Jastrow basis set 4s3p2d
- ${}^9\Sigma_g^-$, ${}^8\Sigma_u^-$, and ${}^8\Delta_g$: $n^* = N_{\uparrow} \Rightarrow \mathsf{JHF}$ wave function!
- $^{7}\Delta_{u}$ and $^{7}\Sigma_{g}^{-}$: $n^{*} = N_{\uparrow} + 1 \Rightarrow \mathsf{JAGPn}^{*}$ wave function!

Fe₂: our QMC description (II)

Controlled dissociation

- Some symmetries may be lost in the dissociation
- For Fe₂: total angular momentum conserved for rotations around molecular axis, thus fragments may not have definite total angular momentum
- Correction has to be applied to the atomic reference (given by the energy difference between hybrid JHF atomic fragment reached upon stretching JAGPn* and fully symmetric JHF atomic state (with same primitive basis)

Fe ₂ state	from our wf	exact	
$7\Sigma_g^- \rightarrow$	⁵ D + ⁵ [1]	${}^{5}D + {}^{5}F$	
${}^9\Sigma_g^- \rightarrow$	⁵ D + ⁵ [0]	${}^{5}D$ + ${}^{5}F$	
$^7\Delta_u \rightarrow$	⁵ D + ⁵ [0]	5D + 5D	
$^{8}\Delta_{g} \rightarrow$	5D + 4 [0]	${}^{5}D + {}^{4}F$	
${}^8\Sigma_u^- \rightarrow$	5D + 4 [0]	5D + 4F	

Dissociation limits of various Fe_2 states for the RVB wave function

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Mariapia Marchi

Fe₂: our QMC description (III)

Calculations for the Fe atom

LRDMC	exp.
-123.7819(11)	
-123.7520(11)	
-123.73986(72)	
-123.71856(75)	
-123.77731(94)	
-123.76544(81)	
0.81(4)	0.87 (a)
-0.12(4)	0.15 (a)
	LRDMC -123.7819(11) -123.7520(11) -123.73986(72) -123.71856(75) -123.77731(94) -123.76544(81) 0.81(4) -0.12(4)

(a) Moore et al. (1949)

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Fe₂: LRDMC energies

	Energy	R_e	ω_e	exp ω_e
	(Hartree)	(a.u.)	(cm^{-1})	(cm^{-1})
$9\Sigma_g^-$	-247.5486(20)	4.093(19)	301(15)	299.6 (a)
$^7\Sigma_g^-$	-247.5036(20)	4.081(18)	327(15)	300(15) (b)
$^{7}\Delta_{u}$	-247.5351(30)	3.894(18)	373(32)	-
$\overline{^{8}\Delta_{g}}$	-247.5585(30)	3.908(14)	354(24)	-
$\frac{^8\Sigma_u^-}{}$	-247.5706(42)	4.276(28)	210(20)	250(20) (b)

(a) Moskovits (1980) (b) Leopold (1986)

• ${}^9\Sigma_g^-$, ${}^7\Sigma_g^-$, and ${}^8\Sigma_u^-$ in agreement with PES experiment (ω_e and bond elongation)!

I $^{7}\Delta_{u} \omega_{e}$ in agreement with DFT (Sahalub, 2002; Bauschlicher, 2003)

Confirmation of peak symmetries in PES! QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Fe ₂ : Asymptotic limit corrections					
	Energy	Corrected	Difference	Exp	
	(Hartree)	(Hartree)	(eV)	(eV)	
$^7\Sigma_g^-$	-247.5036(20)	-247.5370(24)	+0.64(7)	+0.534(4) (a)	
$9\Sigma_g^-$	-247.5486(20)	-247.5608(24)	0.0		
$^{7}\Delta_{u}$	-247.5351(30)	-247.5771(33)	-0.44(9)	-	
$^{8}\Delta_{g}$	-247.5585(30)	-247.5703(33)	-0.26(9)	-	
$8\Sigma_u^-$	-247.5706(42)	-247.5824(44)	-0.59(12)	-0.902(8) (a)	

(a) Leopold et al., 1986

- After the correction $^7\Delta_u$ is the ground state!
- Experimental $R_e = 3.82(4)$ (Purdum et al., 1982)

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Mariapia Marchi

Conclusions and References

- Cheap method for studying molecules within chemical accuracy
- Single determinant method
- Importance of the optimization
- Answer to the controversial issue of Fe2 ground state
- First row dimers: M. Marchi et al., arXiv:0907.1390/cond-mat.mtr.sci
- Iron dimer: M. Casula et al., arXiv:0906.4824/cond-mat.other (accepted for publication by Chem. Phys. Lett.)

JHF atomic correlation energy

Atom	RHF	Est. exact	JHF VMC	JHF LRDMC	%
Li	-7.432727 ^a	$-7.47806^{\rm a}$	-7.47707(6)	-7.47807(3)	100%
Be	$-14.573023^{\rm a}$	-14.66736^{a}	-14.64747(9)	-14.6575(1)	89.5%
в	-2.54375616^{b}	-2.61940948^{b}	-2.6031(1)	-2.6110(1)	88.9%
\mathbf{C}	-5.32903005^{b}	-5.43249352^{b}	-5.4105(1)	-5.4216(1)	89.5%
N	$-9.66837630^{ m b}$	-9.79973109^{b}	-9.7771(3)	-9.7898(1)	92.4%
Ο	-15.70844748^{t}	-15.90165954^{t}	-15.8754(1)	-15.89233(8)	95.2%
F	-23.93849161^{t}	-24.19290003^{t}	-24.1683(4)	-24.1855(2)	97.09%

MO constrained optimization

- 1. Compute unconstrained derivatives D such that $D = U_T V$ (dimension $L \times N/2$).
- 2. Constrain the derivatives D via projectors written in terms of the current MOs.
- 3. Optimize the unconstrained λ coefficients with usual techniques. Do the projection and apply singular value decomposition. Thus we get the new MOs.
- 4. Go to step 1 until convergence in the energy is reached.

Morse potential fit (I)

Morse potential fit (II)

•
$$V(r) = D_e [1 - e^{-a(r-R_e)}]^2$$

• $ZPE = \frac{1}{2}\hbar\omega_0$,
• $\omega_0 = a\sqrt{\frac{2D_e}{\mu}}$

QMC in the Apuan Alps, Vallico di sotto, July 28th 2009

Mariapia Marchi

$V(r) = D_e [1 - e^{-\phi(r)(r - R_e)}]^2$

Merrit et al., sciencexpress (2009)

$$\phi(r) = \sum_{i=0}^{5} \phi_i \left(\frac{r^p - r_{ref}^p}{r^p + r_{ref}^p} \right),$$

$$p=4, r_{ref}=2.45 {
m \AA}.$$

They find $D_e=929.7(2.0)cm^-1\simeq 0.1153(3)eV$

Lattice regularized DMC (LRDMC)

- Computational effort increases with atomic charge Z
- Non local pseudopotentials to replace valence core electrons
- To perform DMC one has to use a locality approximation to rewrite the pseudopotential. But the E_{FN} of the *true* Hamiltonian is not any more accessible
- LRDMC: lattice regularization of H allows to use pseudopotential in a variational consistent framework!! (Casula et al, PRL 95, 100201 (2005))